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Abstract

The lasso and its successor, the elastic net, are two popular regularized regression methods which

produce sparse models. We propose two different extensions to these methods that leverage feature

information in the model-fitting process to improve predictive accuracy. The first method, the

“principal components lasso” (“pcLasso”), combines the lasso penalty with a quadratic penalty

that shrinks the coefficient vector toward leading principal components of each group. pcLasso is

compatible with both overlapping and non-overlapping groups. We provide some theory for the

method and illustrate the method on some simulated and real data examples. Next, we develop a

general framework for organizing feature information into an auxiliary matrix and propose a method,

called the “feature-weighted elastic net” (“fwelnet”), that uses it to adapt the relative penalties on

the feature coefficients in the elastic net penalty. We present connections between this method and

the group lasso, and also to Bayesian estimation.

We then switch gears and explore how to relax another limitation of the lasso and the elastic

net: the fact that the model’s prediction must be a sparse linear combination of the input features.

Motivated by reluctant interaction modeling, we propose a multi-stage algorithm, called “reluctant

generalized additive modeling” (RGAM), that can fit sparse generalized additive models (GAMs) at

scale. While the individual features are allowed to vary non-linearly with the response, the model

remains additive in the input features, thus preserving interpretability. RGAM has an explicit bias

toward simpler, linear relationships, with non-linearities only included if they improve predictive

power. Unlike existing methods for sparse GAMs, RGAM can be extended easily to binary, count

and survival data.

Finally, we turn to the practical matter of computation. Earlier versions of the glmnet package,

which implements the lasso and the elastic net in R, had specialized FORTRAN subroutines for fitting

the models for popular model families, including the logistic regression and Poisson regression models.

We describe how the elastic net penalty can be applied to any generalized linear model (GLM), and

explain the computational approach needed to make model-fitting feasible in practice. We also show

how this approach extends to fitting regularized Cox proportional hazards models for (start, stop]

data and for stratified data.
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Chapter 1

Introduction

In the last two decades, we have witnessed exponential growth in data across several fields, including

genomics, finance and internet applications. Datasets have grown both in the number of observations

and number of features per observation, presenting data analysts with the opportunity to discover

complex and intricate relationships. In particular, having access to a larger pool of features suggests

that we can do a better job of capturing the signal in the response variable that we want to predict.

At the same time, this wealth of data has its challenges. In any prediction problem, it is almost

certainly the case that a large majority of features have no meaningful relationship to the response

(e.g. do we believe that the weather yesterday has any bearing on the number of children born

today?). Introducing such features into our prediction models only serves to increase the noise in

our dataset, making it harder to uncover features that truly matter for our prediction problem. A

secondary problem raised by having access to so many features is that of interpretability: why is

our model making the predictions that it is making? Without this understanding, one could argue

that our model has done nothing to further scientific knowledge.

One strategy that researchers have taken to deal with these challenges is to develop regularized

models, that is, models which have some additional constraints imposed on them so that they yield

models with desirable properties. One such desirable property is sparsity : the property that the

model uses only a fraction of the features available to it when making predictions. The lasso (Tib-

shirani, 1996) and its successor, the elastic net (Zou and Hastie, 2005), are two popular regularized

regression methods which produce sparse models. Their popularity stems from at least three reasons.

First, they make few assumptions on the data at hand (the features just have to be real-valued),

making it applicable to a wide variety of data settings. Second, their predictions are sparse linear

combinations of the input features, making them easy to interpret. Third, the model coefficients are

the result of a convex minimization problem which can be solved in an extremely computationally

efficient manner.

While having few assumptions about the data makes the lasso and elastic net widely applicable,

1



CHAPTER 1. INTRODUCTION 2

in some settings they leave potentially useful information on the table. For example, the input

features to these algorithms are treated as exchangeable. This is often not the case: when trying

to predict the number of children born today, the number of children born yesterday is certainly

more useful than the yesterday’s weather! Prediction models that are able to leverage such feature

information in the model-fitting process are likely to be more accurate. In Chapter 2, we consider

how the lasso can be modified to incorporate one type of feature information: feature grouping

information. The idea is that features in the same group are likely to have a similar relationship

with the response. We propose a new method, called the “principal components lasso” (“pcLasso”),

that combines the lasso penalty with a quadratic penalty that shrinks the coefficient vector toward

leading principal components of each group. pcLasso is compatible with both overlapping and non-

overlapping groups. We provide some theory for the method and illustrate the method on some

simulated and real data examples. An implementation for pcLasso is provided in the pcLasso R

package.

In Chapter 3, we develop a more general framework for organizing such feature information to

help with modeling. We think of each source of feature information as a “feature of features” and

organize them into an auxiliary matrix. We then propose a method, called the “feature-weighted

elastic net” (“fwelnet”), that uses this auxiliary matrix to adapt the relative penalties on the feature

coefficients in the elastic net penalty. In our simulations, fwelnet outperforms the lasso in terms of

test mean squared error and usually gives an improvement in true positive rate or false positive rate

for feature selection. We present connections between this method and the group lasso, and also to

Bayesian estimation. We also apply this method to early prediction of preeclampsia, where fwelnet

outperforms the lasso in terms of 10-fold cross validation (0.84 vs. 0.80) and suggest how fwelnet

might be used for multi-task learning. An implementation of the fwelnet method is provided in the

fwelnet R package.

In Chapter 4, we switch gears and explore how to relax another limitation of the elastic net: the

fact that the model’s prediction must be a sparse linear combination of the input features, which is a

poor approximation of reality in some applications. Motivated by reluctant interaction modeling (Yu

et al., 2019), we propose a multi-stage algorithm, called “reluctant generalized additive modeling”

(RGAM), that can fit sparse generalized additive models (GAMs) at scale. While the individual

features are allowed to vary non-linearly with the response, the model remains additive in the input

features, thus preserving interpretability. RGAM is guided by the principle that, if all else is equal,

one should prefer a linear feature over a non-linear feature. Hence, RGAM has an explicit bias

toward simpler, linear relationships, with non-linearities only included if they improve predictive

power. Unlike existing methods for sparse GAMs, RGAM can be extended easily to binary, count

and survival data. We demonstrate the method’s effectiveness on real and simulated examples. The

method is implemented in the relgam R package.

In Chapter 5, we turn to the practical matter of computation. For statistical methodology to
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make real-world impact, it must be accompanied with robust, computationally efficient software.

One reason for the popularity of the elastic net is that it has an extremely efficient implementation

in the glmnet R package (Friedman et al., 2010). Earlier versions of the package had specialized

FORTRAN subroutines for fitting the elastic net model for popular model families, including the

logistic regression and Poisson regression models. We describe how the elastic net penalty can be

applied to any generalized linear model (GLM), and explain the computational approach needed to

make model-fitting feasible in practice. We also show how this approach extends to fitting regularized

Cox proportional hazards models for (start, stop] data and for stratified data.

A note on provenance

The contents in this dissertation are drawn from four manuscripts. Chapter 2 is drawn with minor

modifications from the manuscript “Principal component-guide sparse regression”, jointly authored

with Jerome Friedman and Robert Tibshirani, to appear in the Canadian Journal of Statistics.

Chapter 3 is drawn from a manuscript under review titled “Feature-weighted elastic net: using “fea-

tures of features” for better prediction” and jointly authored with Nima Aghaeepour, Trevor Hastie

and Robert Tibshirani. Chapter 4 is drawn from the manuscript “Reluctant generalized additive

modeling”, jointly authored with Robert Tibshirani and published in the International Statistical

Review (Tay and Tibshirani, 2020). Chapter 5 is drawn with modifications from a manuscript under

review titled “Elastic net regularization paths for all generalized linear models” under review, jointly

authored with Balasubramanian Narasimhan and Trevor Hastie.



Chapter 2

Principal Components Lasso

2.1 Introduction

We consider the usual linear regression model, where we are given n realizations of p predictors

X = {xij} for i = 1, 2, . . . , n and j = 1, 2, . . . , p, and a response variable y = (y1, . . . , yn)T . Assume

that we have centered y and the columns of X so that we can avoid fitting an intercept term. We

model the relationship between the response and the predictors by

yi =
∑
j

xijβj + εi,

with ε having mean 0 and variance σ2. The ordinary least squares (OLS) estimates of βj are

obtained by minimizing the residual sum of squares (RSS). There has been much work on regularized

estimators that offer an advantage over the OLS estimates, both in terms of accuracy of prediction

on future data and interpretation of the fitted model. One such method is the lasso (Tibshirani,

1996), which minimizes

J(β) =
1

2
‖y −Xβ‖22 + λ ‖β‖1 ,

where β = (β1, . . . , βp)
T , and the tuning parameter λ ≥ 0 controls the sparsity of the final model.

A big reason for the lasso’s popularity is that the fitted model is sparse, i.e. βj = 0 except for

a handful of indices j. Besides making the predictions more interpretable, the user can focus on

the small subset of selected features for subsequent exploration and research. These advantages are

especially pertinent in wide data settings such as genome-wide association studies.

The lasso is an alternative to ridge regression (Hoerl and Kennard, 1970), which minimizes an

objective function with an `2 penalty:

β̂R = argmin
β∈Rp

1

2
‖y −Xβ‖22 + λ ‖β‖22 .

4
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Let X = UDVT be the singular value decomposition (SVD) of X, with D being a diagonal

matrix with diagonal entries being the singular values d1 ≥ d2 ≥ · · · ≥ dm > 0, where m = rank(X).

The ridge regression coefficients and the resulting predictions have an explicit form:

β̂R = (XTX + I)−1XTy, Xβ̂R =

m∑
j=1

d2j
d2j + λ

uju
T
j y,

where uj is the jth column of U. Since the OLS predictions have the form

Xβ̂OLS =

m∑
j=1

uju
T
j y,

and d2j/(d
2
j+λ) decreases as j increases, we see that ridge regression biases the predictions toward the

leading principal components (PCs) of X, which can be effective for improving prediction accuracy.

This is because we typically expect variation in the response to correlated well with variation in the

features, which is why we collect these features in the first place. However, it has the disadvantage

of producing dense models: all the original features have non-zero coefficients in the fitted model.

The elastic net (Zou and Hastie, 2005) attempts to combine the lasso and ridge regression by adding

an `2 penalty to the lasso’s objective function.

There are two limitations that we found with the elastic net. First, if the predictors come in

pre-assigned groups, the elastic net does not make use of this information to guide model-fitting.

Such grouping information has the potential to be very useful in some settings. For example, in

genomics if we know that a certain genetic pathway has some influence on a response variable, the

genes making up that genetic pathway are likely to have an influence as well. Conversely, if a certain

genetic pathway is irrelevant to the response variable, the genes in that pathway probably do not add

predictive power to our model. Second, in practice we have found that the bias of ridge regression

(and hence the elastic net) toward the leading PCs is too weak.

We propose a new method, the principal components lasso (“pcLasso”), a penalized regression

method that is able to use grouping information in its model-fitting process and strongly biases

the solution vector toward the leading principal components while maintaining sparsity of the fitted

model. This allows for better prediction accuracy without sacrificing interpretability of the model.

pcLasso is applicable to both overlapping and non-overlapping group settings. It is computationally

scalable, with the fitted model being a solution to a convex minimization problem that can be solved

efficiently by coordinate descent.

The rest of this chapter is organized as follows. In Section 2.2, we briefly review methods

comparable to pcLasso and describe the gap that pcLasso fills. We detail the pcLasso method in the

two sections following, with Section 2.3 describing pcLasso for the single group case for motivation,

and Section 2.4 detailing the method for multiple groups. We illustrate the effectiveness of pcLasso

on real data examples in Section 2.5, and give details of our computational approach in Section 2.6.
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Section 2.7 derives a formula for the degrees of freedom of the pcLasso fit. In Section 2.8 we discuss

a simulation study comparing our proposal with other methods. We study the theoretical properties

of the principal components lasso in Section 2.9, showing that, under certain assumptions, it can

yield lower `2 and prediction error than the lasso. We end with a discussion and ideas for future

work. The Appendix contains further details and proofs, as well as a full description of the set-up

and results for our simulation study in Section 2.8.

2.2 Related work

There are several penalized regression methods that can exploit group structure, the most commonly

employed being the group lasso (Yuan and Lin, 2006) for non-overlapping groups and the overlap

group lasso (Obozinski et al., 2009) for overlapping groups. These methods induce sparsity at the

group level by imposing `2 penalties for the coefficients in each group. However, they do not induce

sparsity within each group: if a group is selected, all of its features will have non-zero coefficients.

This may be desirable (e.g. dummy variables for the same categorical variable, or basis expansions

of the same original feature) or not (e.g. genetic pathways containing hundreds of genes). pcLasso

may be more suitable in the latter case as it achieves sparsity at the level of individual features while

using grouping information for obtaining the fit. We demonstrate in Section 2.6.1 that pcLasso can

also achieve in sparsity at the group level in some settings. The sparse group lasso (Simon et al.,

2013) achieves both sparsity of groups and within the groups by combining the lasso and group

lasso penalties, but does not bias the solution toward the leading principal components. It is also

computationally much slower than pcLasso (see Appendix A.2 for details).

The idea of biasing the solution vector toward the top PCs of the data matrix is not new.

In principal components regression, we compute the PCs of the data matrix, then perform linear

regression of the response on the top k PCs, where k is a tuning parameter. The main drawback

of this method is that the PCs are dense in the original feature space, meaning the resulting model

is not sparse. One way to overcome this is to find “sparse principal components”, i.e. sparse linear

combinations of the original variables that approximate the PCs. There are a variety of methods to

do so, e.g. Jolliffe et al. (2003), Zou et al. (2006), Mackey (2009), Witten et al. (2009), Johnstone

and Lu (2009), Cai et al. (2013). The main difficulty in implementing regression on sparse principal

components is computational as the sparsity of each PC is typically governed by its own tuning

parameter. Sharing of tuning parameters across PCs is not straightforward, even if we enforce

the same level of sparsity for each PC via a bound constraint. The algorithms typically solve the

optimization problem for the sparse PC in Lagrange form, and this same bound constraint value

will map to different dual variable values which we cannot predict in advance. This problem is

compounded in situations where we have multiple groups of variables. pcLasso avoids the difficulty

of estimating the sparse PCs before running the regression through the use of the pcLasso penalty;
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this is not a loss since we are not interesting in the sparse PCs themselves but the resulting regression

model.

2.3 Quadratic penalties based on principal components

In generalizing the `2 penalty, one can imagine a class of penalty functions of the form

βTVZVTβ,

where Z is a diagonal matrix whose diagonal elements are functions of the squared singular values:

Z11 = f1(d21, d
2
2, . . . , d

2
m), Z22 = f2(d21, d

2
2, . . . , d

2
m), . . .

The ridge penalty chooses Zjj = 1 for all j, leading to the quadratic penalty βTβ. Here we

propose a different choice: we minimize

J(β) =
1

2
‖y −Xβ‖22 + λ ‖β‖1 +

θ

2
βTVDd21−d2jV

Tβ, (2.1)

where Dd21−d2j is an m×m diagonal matrix with diagonal entries equaling d21−d21, d21−d22, . . . , d21−d2m.

We call this the “principal components lasso penalty” and define it more generally in the next section.

The value θ ≥ 0 is a tuning parameter determining the weight given to the second penalty. We see

that this penalty term gives no weight (a “free ride”) to the component of β that aligns with

the first right singular vector of X, i.e, the first principal component (PC). Beyond that, the size

of the penalty depends on the gap between the squared singular values d2j and d21. If we view the

quadratic penalty as representing a Bayesian (log-)prior, it puts infinite prior variance on the leading

eigenvector.

It is instructive to compare Equation (2.1) with λ = 0 (and with θ/2 replaced with θ) to ridge

regression which uses the penalty θβTβ. Ridge regression produces the fit

Xβ̂R =

m∑
j=1

d2j
d2j + θ

uju
T
j y,

whereas Equation (2.1) gives

Xβ̂L =

m∑
j=1

d2j
d2j + θ(d21 − d2j )

uju
T
j y. (2.2)

The latter expression corresponds to a more aggressive form of shrinkage toward the leading singular

vectors. To see this, Figure 2.1 shows the shrinkage factors d2j/(d
2
j + θ) and d2j/[d

2
j + θ(d21 − d2j )]

for a 100 × 20 design matrix X with a strong rank-1 component. In each panel, we have chosen
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the value θ (different for each method) to yield the degrees of freedom indicated at the top of the

panel. (For each method, the degrees of freedom is equal to the sum of the shrinkage factors.) The
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Figure 2.1: Simulation example: The design matrix X has dimensions 100×20 with a strong rank-one
component: the eigenvalues of XTX are shown in the top-left panel. Top-right and bottom-left panels
show the shrinkage factors for the pcLasso penalty (blue) and ridge regression (red) across the PCs,
for different degrees of freedom. For small degrees of freedom, pcLasso shrinks more aggressively
to the top PCs. For larger degrees of freedom, the two methods have similar shrinkage profiles.
The bottom right panel shows the mean-squared error (MSE) of ridge regression and pcLasso as the
regularization parameter θ varies along the horizontal axis, and that of PC regression for various
ranks. pcLasso achieves about the same MSE as PC regression of rank-1, while ridge regression does
not.

eigenvalues of XTX are shown in the top-left panel. We see that when the degrees of freedom is
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small, ridge regression shrinks the top component about twice as much as does pcLasso (top-right

panel). This contrast is less stark when the degrees of freedom is increased to five (bottom-left

panel). This aggressiveness can help pcLasso improve prediction accuracy when the signal lines up

strongly with the top PCs. More importantly, with pre-specified feature groups, the pcLasso penalty

in Equation (2.1) can be modified in such a way that it shrinks the subvector of β in each group

toward the leading PCs of that group. This exploits the group structure to give potentially better

predictions and simultaneously selects groups of features. We give details in the next section.

2.4 Principal components lasso (“pcLasso”)

2.4.1 Definition

Suppose that the p predictors are grouped in K non-overlapping groups (we discuss the overlapping

groups case later in Section 2.4.2). For example, these groups could be different gene pathways,

assays or protein interaction networks. For k = 1, . . . ,K, let Xk ∈ Rn×pk denote the pk columns of

X corresponding to group k, let mk = rank(Xk), and let (Vk, dk) denote the right singular vectors

and singular values of Xk. pcLasso minimizes

J(β) =
1

2
‖y −Xβ‖22 + λ ‖β‖1 +

θ

2

∑
k

βTk

(
VkDd2k1−d

2
kj

VT
k

)
βk. (2.3)

Here, βk is the sub-vector of β corresponding to group k, dk = (dk1, . . . , dkmk) are the singular

values of Xk is decreasing order, and Dd2k1−d
2
kj

is a diagonal matrix with diagonal entries d2k1 − d2kj
for j = 1, 2, . . . ,mk. Optionally, we might also multiply each penalty term in the sum by a factor
√
pk, pk being the group size, as is standard in related methods such as the group lasso (Yuan and

Lin, 2006).

Some observations on solving Equation (2.3) are in order:

• The objective function is convex and the non-smooth component is separable. Hence, it can

be optimized efficiently by a coordinate descent procedure (see Section 2.6 for details).

• Our approach is to fix a few values of θ (including zero, corresponding to the lasso), and then

optimize the objective in Equation (2.3) over a path of λ values. Cross-validation is used to

choose θ̂ and λ̂.

• The parameter θ is not unitless, and is difficult to interpret. In our software, instead of asking

the user to specify θ, we ask the user to specify a function of θ, denoted by “ratio”. This is

the ratio between the shrinkage factors in Equation (2.2) for k = 2 and k = 1 (the latter being
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equal to 1). Explicitly,

ratio =
d22

d22 + θ(d21 − d22)

/
d21

d21 + θ(d21 − d21)
=

d22
d22 + θ(d21 − d22)

.

This ratio is between 0 and 1, with ratio = 1 corresponding to θ = 0 (the lasso) and lower

values corresponding to more shrinkage. In practice, we find that using the values ratio =

0.25, 0.5, 0.75, 0.9, 0.95 and 1 covers a wide range of possible models.

• A potentially costly part of the computation is the SVD of each Xk. If Xk large, for compu-

tational ease, we can use an SVD of rank < rank(Xk) as an approximation without much loss

of performance.

For some insight into how pcLasso shrinks coefficients, we consider the contours of the penalty

in the case of two predictors. Let ρ denote the correlation between these two predictors. In this

case, it is easy to show that the two right singular vectors of X are (1, 1)T /
√

2 and (1,−1)T /
√

2,

with the former (latter resp.) being the leading singular vector if ρ > 0 (ρ < 0 resp.). Figure 2.2

presents the penalty contours for pcLasso along with that for ridge, lasso and elastic net regression

for comparison. (See Appendix A.1 for detailed computations on the pcLasso contours.) We can

see that pcLasso imposes a smaller penalty in the direction of the leading singular vector, and that

this penalty is smaller when the correlation between the two predictors is stronger. We also see that

as θ → 0, the pcLasso contours become like those for the lasso, while as θ → ∞, they become line

segments in the direction of the leading singular vector.

Figure 2.3 shows the penalty contours for a particular set of three predictors, with the ratio λ/θ

decreasing as we go from left to right. As this ratio goes from∞ to 0, the contours move from being

the `1 ball (as in the lasso) to becoming more elongated in the direction of the first PC.

2.4.2 The overlapping groups setting

In some settings, individual features might belong to more than one group. For example, one gene

can belong to several genetic pathways. As in the group lasso (Yuan and Lin, 2006), there are

two approaches one can take to deal with overlapping groups. One approach is to apply the group

penalty to the given groups: this however has the undesirable effect of zeroing out a predictor’s

coefficient if any group to which it belongs is zeroed out. The overlap also causes additional compu-

tational challenges as the penalty is no longer separable. A better approach is the “overlap group

lasso” penalty (Obozinski et al., 2009), where one replicates columns of X to account for multiple

memberships, hence creating non-overlapping groups. The model is then fit as if the groups are

non-overlapping and the coefficients for each original feature are summed to create the estimated

coefficient for that feature. We take this same approach for pcLasso.
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Figure 2.2: Contours for the pcLasso penalty, compared with those for ridge, lasso and elastic net
regression. pcLasso penalizes the coefficient vector less in the direction of the leading singular vector.
As θ → 0, the pcLasso contours become like those for the lasso, while as θ → ∞, they become line
segments in the direction of the leading singular vector.

Figure 2.3: Contours for the pcLasso penalty for three predictors. For a fixed value of θ, λ decreases
as we go from left to right. As we give less relative weight to the `1 penalty, the penalty contours
look less and less like that of the lasso and become more elongated in the direction of the first PC.
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2.5 Real data examples

2.5.1 p53 microarray expression data

We analyze the data from a gene expression study, as described in Zeng and Breheny (2016), taken

from Subramanian et al. (2005). It involves the mutational status of the gene p53 in cell lines. The

study aims to identify pathways that correlate with the mutational status of p53, which regulates

gene expression in response to various signals of cellular stress. The data consists of 50 cell lines, 17

of which are classified as normal and 33 of which carry mutations in the p53 gene. To be consistent

with the analysis in Subramanian et al. (2005), 308 gene sets that have size between 15 and 500 are

included in our analysis. These gene sets contain a total of 4,301 genes and is available in the R

package grpregOverlap. When the data is expanded to handle the overlapping groups, it contains a

total of 13,237 columns. As the response is binary (“does the patient have the mutation or not?”),

we fit a penalized logistic regression model where we minimize the sum of the logistic loss and the

pcLasso penalty.

We divided the data into 10 cross-validation (CV) folds and applied the lasso, pcLasso and the

group lasso using the R package grpregOverlap. (The data was too large for the sparse group lasso

package, SGL.) Figure 2.4 shows that pcLasso achieves higher cross-validated area under the curve

(AUC) than the other approaches.

Figure 2.4: Results for p53 dataset: A plot of cross-validated area under the curve (AUC) vs. the
number of non-zero genes in the selected model for the lasso, group lasso and pcLasso. pcLasso
achieves the best result here.
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2.5.2 Colorectal array comparative genomic hybridization (CGH) data

In this next example, we analyze data from a colorectal array comparative genomic hybridization

(CGH) dataset from Nakao et al. (2004), which can be obtained from the R package aCGH. For

n = 39 samples, the response is the stage of the colorectal cancer: 0, 1, 2 or 3. (We removed one

of the samples from the original dataset as the stage of the colorectal cancer was missing.) This

response is on the ordinal scale; as a first approximation we treat it as a quantitative response.

Array-based CGH is run for each of these samples to detect copy number alterations. Following

some data processing and imputation outlined in Nakao et al. (2004), we obtain log2 ratios of copy

number changes for p = 2, 031 clones. We wish to use these copy number changes to predict the

stage of the colorectal cancer.

We divided the data into 10 cross-validation (CV) folds and applied the lasso, elastic net, pcLasso

and the group lasso using the R package gglasso. For elastic net and pcLasso, CV was performed

over the hyperparameters for both the `1 and quadratic penalty terms. For the elastic net, CV chose

α = 1, thus reducing it to the lasso. For pcLasso and group lasso, we used chromosome number as

the grouping information.

The top-left panel in Figure 2.5 shows the CV mean-squared error across the path of models

for each algorithm. The number of non-zero coefficients for the lasso solution can never exceed

the number of observations, resulting in small and less expressive models. In contrast, the path of

pcLasso and group lasso solutions cover a wide range of model sizes, with pcLasso achieving slightly

better minimum CV error at a smaller model size.

In the remaining panels of Figure 2.5, we plot the number of non-zero features we see for each

of the 23 chromosomes across the path of models for each algorithm. As we go down the path of

pcLasso solutions, we can see that the copy number changes in certain chromosomes become more

important; the lasso solution path does not offer us any such insight. While the group lasso solution

path enables us to zoom in on chromosomes of interest, it does not allow us to distinguish between

the importance of different features within the same chromosome.

2.6 Computation of the pcLasso solution

Consider first the simpler case of just one group. Let X = UDVT be the singular value decomposi-

tion of X with D = diag(d1, . . . , dm), where m = rank(X), and let A = VDd21−d2jV
T . The objective

function for pcLasso is

J(β) =
1

2
‖y −Xβ‖22 + λ ‖β‖1 +

θ

2
βTAβ.
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Figure 2.5: Results for the colorectal array CGH dataset: n = 39, p = 2, 031. The top-left panel
shows the CV mean-squared error for the three methods across the solution path. The models along
the lasso path are small relative to the total number of features. pcLasso achieves the minimum
CV error by a small margin. The rest of the panels plot the number of non-zero features for each
chromosome across the solution path for the three methods; vertical lines correspond to the model
with smallest CV error.



CHAPTER 2. PRINCIPAL COMPONENTS LASSO 15

Since J is convex in β and the non-smooth part of the penalty is separable, we can minimize J by

applying coordinate descent. The coordinate-wise update has the form

βj ←
S
(∑

i xijr
(j)
i − θsj , λ

)
∑
i x

2
ij + θAjj

,

where r
(j)
i = yi −

∑
j′ 6=j xij′βj′ is the partial residual with predictor j removed, sj =

∑
`Aj`β` −

Ajjβj , and S is the soft-thresholding operator.

These updates can be easily generalized to the general case of K non-overlapping groups (Equa-

tion 2.3) and where observations are given different weights (observation i is given weight wi). Using

the notation of Section 2.4, we apply coordinate descent as shown in Algorithm 1. Algorithm 1 is

also easily generalized to the logistic regression model for binomial data, using the same Newton-

Raphson (iteratively reweighted least squares) framework used in the glmnet package (Friedman

et al., 2010).

Algorithm 1 Computation of the pcLasso solution

Input: Response y ∈ Rn, features X ∈ Rn×p, K non-overlapping groups of features each of size pk,
fixed value of θ ≥ 0. Observation weights wi ≥ 0 for i = 1, . . . , n. Grid of hyperparameter values
(λmax, . . . , λmin). Assume that y and the columns of X have been centered around their weighted
mean.

1. Compute the SVD of the columns of X corresponding to each group: Xk = UkDkV
T
k for

k = 1, . . . ,K. Compute Ak = VkDd2k1−d
2
kj

VT
k for each group k. Compute vj =

∑
i w̃ix

2
ij for

j = 1, . . . , p, where w̃i = nwi/
∑
i wi. Set β = 0.

2. For λ ∈ (λmax, . . . , λmin):

(a) For j = 1, 2, . . . , p, 1, 2, . . . until convergence:

i. Compute the partial residual r
(j)
i = yi −

∑
j′ 6=j xij′βj′ for i = 1, . . . , n.

ii. Compute sj =
∑
`A

k
j`β` −Akjjβj , where k is the group containing predictor j.

iii. Update

βj ←
S
(∑

i w̃ixijr
(j)
i − θsj , λ

)
vj + θAkjj

.

We have developed an R package, pcLasso, which implements Algorithm 1. For computational

efficiency, the coordinate descent step (i.e. Step 2 of Algorithm 1) is implemented as a FORTRAN

routine. In a simulation of model-fitting times (see Appendix A.2 for details), the model-fitting time

for pcLasso is comparable to that of the faster implementation of the group lasso, and is about two

orders of magnitude faster than that of the sparse group lasso. We note further that when the cost

for the initial SVD is separated out, the speed of pcLasso is roughly comparable to that of glmnet,

which implements the lasso. In practice one can compute the SVD upfront for the given feature
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matrix, and then use it for subsequent applications of pcLasso. For example, in cross-validation,

one could compute just one SVD for the entire feature matrix, rather than one SVD in each fold.

Alternatively, one could approximate the pcLasso solution by using a low-rank SVD in place of the

full SVD.

2.6.1 pcLasso’s grouping effect

In our experiments, we noticed that pcLasso can have a sparse grouping effect, even though it does

not use a two-norm penalty. For Figure 2.6, we generated n = 50 observations with 750 predictors,

arranged in 50 groups of 15 predictors. Within each group, the predictors were either independent

(left panel) or had a strong rank-one component (right panel). The response was a linear combination

of the features in the first 20 groups with additive Gaussian noise. Within each of these groups, 7

of the features had a coefficient of either 1 or −1 while the remaining 8 features had a coefficient

of 0. The figure plots the number of non-zero groups (i.e. groups with at least one zero coefficient)

against the number of non-zero coefficients for the lasso, the sparse group lasso (SGL) and pcLasso.

The latter two methods were run with different tuning parameters. We see that pcLasso shows no

grouping advantage over the lasso in the left panel, but produces moderately strong grouping in the

right panel. One might argue that this is reasonable: grouping only occurs when the groups have

some strong internal structure. The sparse group lasso, on the other hand, always displays a strong

grouping effect.
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Figure 2.6: Grouping results for the lasso, sparse group lasso (SGL) and pcLasso. n = 50 and
p = 750, with the predictors coming in 50 groups of size 15 each. Left panel: Predictors were
independent. pcLasso has similar grouping behavior as the lasso. Right panel: Within each group,
predictors had a strong rank-one component. Here, pcLasso shows a stronger grouping effect than
the lasso. SGL has a strong grouping effect in both settings.
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2.6.2 Connection to the group lasso and a generalization of pcLasso

The group lasso and sparse group lasso objective functions are given by

JGL(β) =
1

2
‖y −Xβ‖22 + λ1

∑
k

‖βk‖2 ,

JSGL(β) =
1

2
‖y −Xβ‖22 + λ ‖β‖1 + λ1

∑
k

‖βk‖2 ,

respectively. In the original group lasso paper (Yuan and Lin, 2006) it was assumed that the Xk,

the block of columns in X corresponding to group k, were orthonormal, i.e. XT
kXk = I. This

makes the computation considerably easier and as pointed out by Simon and Tibshirani (2012), is

equivalent to a penalty of the form
∑
k ‖Xkβk‖2. The R package grpreg uses this orthogonalization

and states that it is essential to its computational performance (Breheny and Huang, 2015). Since

‖Xkβk‖2 =
∥∥DkV

T
k βk

∥∥
2
, this orthogonalization penalizes the top eigenvectors more, in direct con-

trast to pcLasso which puts less penalty on the top eigenvectors. Of course, the group lasso without

the `1 term does not deliver sparsity in the features. We also note that this orthogonalization does

not work with the sparse group lasso, as the sparsity among the original features would be lost, and

does not work whenever pk > n for any group k.

One could envision a variation of pcLasso, namely a version of the sparse group lasso that uses

an objective function of the form

1

2
‖y −Xβ‖22 + λ ‖β‖1 + λ1

∑
k

∥∥∥R1/2
k βk

∥∥∥
2
,

where Rk is any weight matrix. For example, Rk = VkDd2k1−d
2
kj

VT
k as in Equation (2.3) would put

less penalty on the higher eigenvectors and induce strong group sparsity. We have not experimented

with this yet, as the computation seems challenging due to the presence of `2 norms.

2.7 Degrees of freedom

Given a vector of response values y with corresponding fits ŷ, Efron (1986) defines the degrees of

freedom as

df(ŷ) =

∑
i Cov(yi, ŷi)

σ2
.

The degrees of freedom measures the flexibility of the fit: the larger the degrees of freedom, the more

closely the fit matches the response values. For fits of the form ŷ = My, the degrees of freedom

is given by df(ŷ) = tr(M). For the lasso, the number of non-zero elements in the solution is an

unbiased estimate of the degrees of freedom (Zou et al., 2007). Zou (2005) derived an unbiased
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estimate for the degrees of freedom of the elastic net: if the elastic net solves

minimize
β

‖y −Xβ‖22 + λ1 ‖β‖1 + λ2 ‖β‖22 ,

then

d̂f = tr
{
XA(XT

AXA + λ2I)−1XT
A
}

is an unbiased estimate for the degrees of freedom, where A is the active set of the fit.

Using similar techniques as that of Zou (2005), we can derive an unbiased estimate for the degrees

of freedom of pcLasso when the number of groups K is equal to one:

Theorem 1 (Degrees of freedom for pcLasso). Consider the solution to the pcLasso problem

minimize
β

‖y −Xβ‖22 + λ ‖β‖1 + θβTVDd21−d2jV
Tβ,

where Dd21−d2j is a p × p matrix with entries d21 − d2j (m = rank(X), dm+1 = · · · = dp = 0). Let

W = (VDd21−d2jV
T )1/2. Then an unbiased estimate for the degrees of freedom for pcLasso is

d̂f = tr
{
XA(XT

AXA + θWT
AWA)−1XT

A
}
,

where A is the active set of the fit.

2.8 A simulation study

We tested the performance of the principal components lasso against other methods in a simulation

study. Appendix A.3 contains more figures and details on the data generation processes; we present

an illustrative sampling of the results here.

For pcLasso we used the following cross-validation (CV) procedure to select the tuning param-

eters: For each value of ratio = 0.25, 0.5, 0.75, 0.9, 0.95 and 1, we ran pcLasso along a path of λ

values with ratio = ratio. (We found that these values of ratio covered a good range of models

in practice.) For each run, the value of λ which gave the smallest CV error was selected, i.e. the

lambda.min value as in the glmnet package. We then compared the CV error across the 6 values of

ratio and selected the value of ratio with the smallest CV error and its accompanying λ value. We

benchmarked pcLasso against the following methods:

1. The null model, i.e. the mean of the responses in the training data.

2. Elastic net with CV on λ and across α = 0, 0.2, 0.4, 0.6, 0.8 and 1.

3. Lasso with CV on λ.
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4. Modified principal components (PC) regression, where we perform linear regression with the

top k principal components from each group together. (That is, if there are G groups, we

perform linear regression on Gk features.) We use CV to choose the rank k.

5. The group lasso with CV on λ.

6. The sparse group lasso with CV on λ and across α = 0, 0.2, 0.4, 0.6, 0.8 and 1.

To compare the methods, we considered the mean-squared error (MSE) achieved on 5,000 test

points, as well as the true positive rate (TPR) and true negative rate (TNR) for the features selected

by the model. Each simulation setting was run 30 times. We ran the simulations for a range of

signal-to-noise ratios (SNR) (from 0.5 to 5). (If the response is given by y = µ + ε, where µ and ε

represent the signal and noise components respectively, then SNR = V ar(µ)/V ar(ε).) The noise ε

was always generated from a mean-zero Gaussian distribution, with variance chosen to attain the

desired SNR. We found that the conclusions did not change much across this range. We present

results for SNR = 1 in the main text; Appendix A.3 includes figures for SNR = 5 as well. (For the

TPR-TNR plots, a small amount of jitter was added to the points for a better view of the data.)

2.8.1 Setting 1: PC regression and pcLasso’s “home court”

In the first setting, n = 100 and p = 200 with the features coming in 10 groups of 20 predictors

each. Each data matrix is generated as an approximately rank-3 matrix: for k = 1, . . . , 10, Xk =∑3
i=1 i · uivTi + E, where the entries of the ui, vi and E are i.i.d. N (0, 1). The response is the sum

of the top sparse principal component of the first 5 groups, where the sparse principal component

is computed by the elasticnet package. Each sparse principal component is constrained to have 3

non-zero loadings each. The performance on test MSE, TPR and TNR is shown in Figure 2.7. In

terms of MSE, the modified PC regression procedure performs best, with pcLasso following closely

behind. However, PC regression does not provide any selection of features (all features are included

in the model) whereas pcLasso sometimes provides a sparse solution.

2.8.2 Setting 2: lasso’s “home court”

In this setting, n = 100, p = 50, with the entries in the design matrix being drawn independently

from the N (0, 1) distribution. The response is the sum of the first 5 variables with noise, i.e.

y =

5∑
j=1

Xj + ε.

The performance on test MSE is shown in Figure 2.8. pcLasso appears to perform on par with

the elastic net, the lasso and the sparse group lasso. These 4 methods performed comparably in

terms of TPR and TNR, with TPR almost always being 1 even in the SNR = 1 case. The modified
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Figure 2.7: pcLasso’s “home court” simulation: n = 100, 10 groups of 20 predictors each. Response
is the sum of the top sparse PC of the first 5 groups with noise. The figure on the left presents test
MSE (note the log scale for the y-axis) while the figure on the right presents TPR and TNR for the
features selected by the models (with slight jitter). The modified PC regression procedure performs
the best with a slight edge over pcLasso, but does not have any model sparsity.

PC regression procedure and the group lasso fare much worse because they are unable to capture the

sparsity in the true response. pcLasso is able to perform well in this setting because of the tuning

parameter ratio. The value of ratio chosen by CV was almost always ratio = 1, which corresponds

to the setting where the quadratic penalty is zeroed out, i.e. the lasso.

2.8.3 Setting 3: correlation across groups

Next, we present a setting where the groups are correlated with each other. We have n = 100

and p = 100 with predictors coming in 5 groups of 20 predictors each. The predictor matrices

are constructed to have rank 5 and to share the top principal component. To generate the shared

principal component, we draw d∗1 ∼ Unif [0.8, 2], and u∗1 ∼ N (0, I100), normalizing u∗1 to have norm

1. For each k = 1, . . . , 5, we generate u2, . . . ,u5 successively by taking draws from N (0, I100),

orthogonalizing with respect to the u`’s already drawn, and normalizing to have norm 1. We follow

the same procedure to get v1, . . . ,v5. The kth predictor matrix is then set to be

Xk = d∗1u
∗
1v1 +

5∑
`=2

u`v`√
`
.
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Figure 2.8: Lasso’s “home court” simulation: n = 100, p = 50, response is the sum of the first 5
variables. Boxplots are the result of 30 simulation runs. The figure on the left presents test MSE
while the figure on the right presents TPR and TNR for the features selected by the models (with slight
jitter). pcLasso performs comparably to the elastic net, lasso and sparse group lasso methods, while
the modified PC regression procedure and the group lasso perform poorly. Through cross-validation,
pcLasso almost always picks ratio = 1 which corresponds to the lasso, and hence is able to do well.
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The response is this top principal component, d∗1u
∗
1, with additive Gaussian noise. In Figure 2.9, we

show how the test MSE varies as a function of the variance explained by the first PC. (We compute

the variance explained by the first PC for each group, then take the mean across the 5 groups.)

The left panel of Figure 2.9 presents the test MSE of the various methods. We see that pcLasso

outperforms the other methods due to the quadratic penalty that biases the solution in the direction

of the top PC of each matrix. The right panel of Figure 2.9 shows the number of times each value

of the ratio hyperparameter was selected across 30 simulation runs. We see that CV was able to

pick small values of ratio as the optimal hyperparameter, which corresponds to greater weight on

the quadratic penalty term and hence, greater bias toward the leading principal component. (We

note that in this setting, the notion of true and null features does not make sense as the signal is

represented in each of the groups.)

Figure 2.9: Simulation with correlation across groups: n = 100, 5 groups of 20 predictors each. The
predictor matrices share the top principal component. The response is the top principal component
with additive Gaussian noise. Boxplots are the result of 30 simulation runs. The figure on the left
shows the test MSE of various methods; pcLasso performs best. The figure on the right shows the
ratio hyperparameter value chosen by CV across 30 simulation runs. CV tended to choose lower
values of ratio, corresponding to larger quadratic penalties.

2.8.4 Setting 4: correlation within each group

In this final setting, we examine the impact of within-group correlations on performance. We have

n = 200 and p = 50 with predictors coming in 5 groups of 10 predictors each. For each predictor

matrix, the rows are independent draws from the multivariate normal distribution with zero mean
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and AR(1) covariance, i.e. for k = 1, . . . , 5 and i = 1, . . . , 200,

[(xk)i]
T ∼ N

0,


1 ρ ρ2 . . . ρ9

ρ 1 ρ . . . ρ8

...
...

...
. . .

...

ρ9 ρ8 ρ7 . . . 1



 ,

where (xk)i denotes the ith row of the kth predictor matrix. The response is the sum of the first

principal components of the first two groups with noise: if the SVD of the kth predictor matrix is

Xk = UkDkV
T
k , the response is

y = (U1D1)1 + (U2D2)1 + ε,

where (UkDk)` represents the `th column of the matrix UkDk.

Figure 2.10 compares the test MSE performance for high within-group correlation (correlation

parameter ρ = 0.8) and low within-group correlation (ρ = 0.2). pcLasso is competitive with the

best-performing method in both settings. pcLasso’s performance gain over the lasso, the elastic net

and the group lasso appears to be larger when there is high within-group correlation. This makes

intuitive sense as pcLasso utilizes the correlation structure implicitly in its minimization procedure

while the other three methods do not. As might be expected, the modified PC regression procedure

performs better when the within-group correlation is higher.

2.9 Theoretical properties of the pcLasso solution

In this section, we present some theoretical properties of the principal components lasso when the

number of groups K is equal to 1, and compare them with that for the lasso as presented in Chapter

11 of Hastie et al. (2015). In particular, we provide non-asymptotic bounds for `2 and prediction

error for pcLasso which are better than that for the lasso in certain settings. We note that the

results in the section can be extended analogously to pcLasso with K non-overlapping groups if the

Xk are orthogonal to each other.

To make the proofs simpler, we consider a slightly different penalty for pcLasso: instead of the

second penalty term having Dd21−d2j as an m ×m matrix, where m = rank(X), we have Dd21−d2j as

a p× p diagonal matrix with dm+1 = · · · = dp = 0. Let A = VDd21−d2jV
T .

As the proofs are rather technical, we state just the results here; proofs can be found in Ap-

pendix A.4.
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Figure 2.10: Simulation with within-group correlations: n = 200, 5 groups of 10 predictors each. The
rows in each predictor matrix are indepedently drawn from the zero-centered multivariate Gaussian
distribution with AR(1) correlation matrix. The response is the sum of the top PC of the first two
groups with additive Gaussian noise. Boxplots are the result of 30 simulation runs. The figure on
the left (right resp.) shows the test MSE when the AR(1) correlation parameter is ρ = 0.8 (ρ = 0.2
resp.). pcLasso is competitive with the best method in each setting, and its performance gain over
the lasso, the elastic net and the group lasso appear to be greater in the high correlation setting.
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2.9.1 Set-up

We assume that the true underlying model is

y = Xβ∗ + w,

where X ∈ Rn×p is the design matrix, y,w ∈ Rn are the response and noise vectors respectively,

and β∗ ∈ Rp is the true unknown coefficient vector. We denote the support of β∗ by S. When we

solve an optimization problem for β, we denote the estimate by β̂ and the error by ν̂ = β̂ − β∗.

In this section, assume that θ > 0 is fixed. (If θ = 0, pcLasso is equivalent to the lasso.) Define

ỹ =

(
y

0

)
, X̃ =

(
X

√
nθ
√

A

)
, w̃ =

(
w

−
√
nθ
√

Aβ∗

)
.

Thus, ỹ = X̃β∗ + w̃. The key idea is that with this notation, pcLasso is equivalent to the lasso for

the augmented matrices X̃ and ỹ. Explicitly, the constrained form of pcLasso solves

minimize
β

∥∥∥ỹ − X̃β
∥∥∥2
2

subject to ‖β‖1 ≤ R, (2.4)

while the Lagrangian form (Equation (2.1)) solves

minimize
β

1

2n

∥∥∥ỹ − X̃β
∥∥∥2
2

+ λ ‖β‖1 . (2.5)

(We have changed the fraction in front of the RSS term to 1/(2n) so that the results are more

directly comparable to those in Hastie et al. (2015).) In the high-dimensional setting, it is standard

to impose a restricted eigenvalue condition on the design matrix X:

1

n
νTXTXν ≥ γ ‖ν‖22 for all nonzero ν ∈ C, (2.6)

with γ > 0 and C an appropriately chosen constraint set. We assume additionally that d21 > nγ.

This is not a restrictive assumption: since d21 is the top eigenvalue of XTX, we automatically have

d21 ≥ nγ. Equality can only happen if C is a subset of the eigenspace associated with d21.

Since A is a positive semidefinite matrix, Equation (2.6) holds trivially for the augmented matrix

X̃ as well:

νT X̃T X̃ν = νT (XTX + nθA)ν ≥ nγ ‖ν‖22 .

The following key lemma shows that we can improve the constant on the RHS of Equation (2.6).

This will give us better upper bounds on the rates of convergence for pcLasso.
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Lemma 2. If X satisfies the restricted eigenvalue condition (Equation (2.6)), then

νT X̃T X̃ν ≥ min
{

(1− nθ)nγ + nθd21, d
2
1

}
‖ν‖22 for all nonzero ν ∈ C.

We note also that the augmented matrix actually satisfies an unrestricted eigenvalue condition:

Lemma 3. For any design matrix X, the augmented data matrix X̃ satisfies

νT X̃T X̃ν ≥ min (nθ, 1) d21 ‖ν‖
2
2 for all ν ∈ Rp.

This enables us to obtain a bound on `2 error without requiring a restricted eigenvalue condition.

2.9.2 Bounds on `2 error

The following theorem establishes a bound for `2 error of the constrained form of pcLasso:

Theorem 4. Suppose that X satisfies the restricted eigenvalue bound (Equation (2.6)) with param-

eter γ > 0 over the set {ν ∈ Rp : ‖νSc‖1 ≤ ‖νS‖1}. Then any estimate β̂ based on the constrained

pcLasso (Equation (2.4)) with R ≤ ‖β∗‖1 satisfies the bound

∥∥∥β̂ − β∗
∥∥∥
2
≤

4
√
|S|
∥∥XTw − nθAβ∗

∥∥
∞

min {(1− nθ)nγ + nθd21, d
2
1}
. (2.7)

In particular, if β∗ is aligned with the first principal component of X, then

∥∥∥β̂ − β∗
∥∥∥
2
≤

4
√
|S|
∥∥XTw

∥∥
∞

min {(1− nθ)nγ + nθd21, d
2
1}
, (2.8)

which is a better upper bound on the rate of convergence than that for the lasso.

What is interesting is that we can actually obtain a similar (weaker) bound without the restricted

eigenvalue condition; the lasso does not have such a bound.

Theorem 5. For any design matrix X, any estimate β̂ based on the constrained pcLasso (Equa-

tion (2.4)) with R ≤ ‖β∗‖1 satisfies the bound

∥∥∥β̂ − β∗
∥∥∥
2
≤

4
√
|S|
∥∥XTw − nθAβ∗

∥∥
∞

min (nθ, 1) d21
.

We could use the theorems above to guide the choice of the hyperparameter θ. When β∗ is

aligned with the first PC of X, it is clear that θ = 1/n gives the tightest possible bound. When β∗

is not aligned with the first PC, then the best value of the bound depends on unknown quantities,

i.e. the true coefficient vector β∗ and the noise component of the response w (and, for Theorem 4,

the restricted eigenvalue parameter γ). We explore this further in Appendix A.5.
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We can obtain similar results for the Lagrangian form of pcLasso:

Theorem 6. Suppose that X satisfies the restricted eigenvalue bound (Equation (2.6)) with param-

eter γ > 0 over the set {ν ∈ Rp : ‖νSc‖1 ≤ 3 ‖νS‖1}. Then any estimate β̂ based on the Lagrangian

form of pcLasso (Equation (2.5)) with λ ≥ 2
∥∥XTw − nθAβ∗

∥∥
∞ /n > 0 satisfies the bound

∥∥∥β̂ − β∗
∥∥∥
2
≤

3λ
√
|S|

min {(1− nθ)nγ + nθd21, d
2
1} /n

. (2.9)

If we remove the restricted eigenvalue condition on X, then the bound (2.9) holds but with the

denominator of the RHS being min (nθ, 1) d21/n instead.

2.9.3 Bounds on prediction error

Like the lasso, the principal components lasso has a “slow rate” convergence for prediction error:

Theorem 7. For any design matrix X, consider the Lagrangian form of pcLasso (Equation (2.5))

with λ ≥ 2
∥∥XTw − nθAβ∗

∥∥
∞ /n. We have the following bound on prediction error:

1

n

∥∥∥X(β̂ − β∗)
∥∥∥2
2
≤ 12λ ‖β∗‖1 .

By using Lemma 3, we can get a smaller bound for the RHS, although the expression is much

more complicated:

Theorem 8. For any design matrix X, consider the Lagrangian form of pcLasso (Equation (2.5))

with λ ≥ 2
∥∥XTw − nθAβ∗

∥∥
∞ /n. Let κ = min(nθ, 1)d21. We have the following bound on prediction

error:
1

n

∥∥∥X(β̂ − β∗)
∥∥∥2
2
≤

3λ(−λp+
√
λ2p2 + 32λ ‖β∗‖1 κp)

4κ
.

The preceding two theorems hold for all design matrices X. If we are willing to assume that X

satisfies the restricted eigenvalue condition, we recover the same upper bound for the “fast rate”

convergence for prediction error as that for the lasso.

Theorem 9. Suppose that X satisfies the restricted eigenvalue bound (Equation (2.6)) with param-

eter γ > 0 over the set {ν ∈ Rp : ‖νSc‖1 ≤ 3 ‖νS‖1}. For the Lagrangian form of pcLasso with

λ ≥ 2
∥∥XTw − nθAβ∗

∥∥
∞ /n, we have

1

n

∥∥∥X(β̂ − β∗)
∥∥∥2
2
≤ 9|S|λ2

min {(1− nθ)nγ + nθd21, d
2
1} /n

.



CHAPTER 2. PRINCIPAL COMPONENTS LASSO 28

2.10 Discussion

Principal components lasso (pcLasso) is a new method for supervised learning that exploits the

correlation and group structure of predictors to potentially improve prediction performance. It

combines the power of principal components regression with the sparsity of the lasso. There are

several interesting avenues for further research:

• Efficient screening rules. To speed up the computation of the lasso solution, glmnet uses strong

rules (Tibshirani et al., 2012) to discard predictors which are likely to have a coefficient of

zero. These strong rules can greatly reduce the number of variables entering the optimization,

thus speeding up computation. Using similar techniques, we can derive strong rules for the

principal components lasso to improve computational efficiency. These rules are provided in

Appendix A.6, and merit further investigation.

• Use of different kinds of correlation or grouping information. Rather than use the covariance

of the observed covariates in a group, one could use other kinds of external information to

form this covariance, for example gene or protein pathways. Alternatively, one could use

unsupervised clustering to generate the feature groups.

• Optimality of the quadratic penalty term. Considering the general class of penalty functions

of the form βTVZVTβ, one could ask if our choice of Z = Dd21−d2j is “optimal” in any sense.

One could also look for Z which satisfy certain notions of optimality.

• Better estimates of the eigenvalues and eigenvectors. The quadratic penalty involves the sam-

ple eigenvalues Dk and eigenvectors Vk. It is known that in the high-dimensional setting

(p � n), these sample quantities can be poor estimates of their population counterparts (see

e.g. Baik and Silverstein (2006), Johnstone and Lu (2009)). Several methods have been devel-

oped to obtain better estimates, typically with the assumption of sparsity for the eigenvectors.

(See Section 2.2 for references on estimating sparse principal components; for estimation of

eigenvalues see e.g. Yata and Aoshima (2012).) The performance of pcLasso could be improved

if the sample Dk’s and Vk’s were replaced with better estimates.

It should be noted, though, that the introduction of such estimates are often accompanied

with additional hyperparameters which the user needs to choose, either using prior knowledge

or a method such as cross-validation. This makes the method more difficult to use in practice.

Additionally, if sparse versions of the Vk’s are estimated, it might be more profitable to fit a

model directly on the XkVk’s instead of inserting them into the quadratic penalty and running

the pcLasso algorithm.

• Extension to elastic net penalty. It is easy to extend pcLasso to incorporate the full elastic net
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penalty in the pcLasso penalty. That is, instead of minimizing (2.3), we minimize

J(β) =
1

2
‖y −Xβ‖22 + λ

(
α ‖β‖1 +

1− α
2
‖β‖22

)
+
θ

2

∑
k

βTk

(
VkDd2k1−d

2
kj

VT
k

)
βk,

where α ≥ 0 is an additional tuning parameter. To minimize this, we can reuse Algorithm 1,

replacing the update in Step 2(a)iii with

βj ←
S
(∑

i w̃ixijr
(j)
i − θsj , λα

)
vj + θAkjj + λ(1− α)

.

An R language package pcLasso implementing pcLasso is available on the CRAN repository.



Chapter 3

Feature-Weighted Elastic Net

3.1 Introduction

As mentioned in the previous chapter, in some supervised learning settings we have external informa-

tion about the features themselves. For example, in genomics, we know that each gene belongs to one

or more genetic pathways, and we may expect genes in the same pathway to have correlated effects

on the response. Methods which leverage such information are likely to perform better prediction

and inference than methods which ignore it. However, many popular supervised learning methods,

including the elastic net Zou and Hastie (2005), do not use such information in the model-fitting

process. Other methods, such as principal components lasso introduced in the previous chapter,

work only with specific types of feature information (e.g. feature grouping information in the case

of pcLasso).

In this chapter, we develop a general framework for organizing such feature information and

propose a variant of the elastic net which uses this information in model-fitting. We only assume

that the information we have for each feature is quantitative, allowing us to think of each source

as a “feature” of the features. For example, in the genomics setting, the kth source of information

could be the indicator variable for whether the jth feature belongs to the kth genetic pathway.

We organize these “features of features” into an auxiliary matrix Z ∈ Rp×K , where p is the

number of features and K is the number of sources of feature information. Let zj ∈ RK denote the

jth row of Z as a column vector. To make use of the information in Z, we propose assigning each

feature a score zTj θ, i.e. a linear combination of its “features of features”. We then use these scores

to influence the weight given to each feature in the model-fitting procedure. Concretely, we give

each feature a different penalty weight in the elastic net objective function based on its score:

Jλ,α,θ(β) =
1

2
‖y −Xβ‖22 + λ

p∑
j=1

wj(θ)

[
α|βj |+

1− α
2

β2
j

]
,

30
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where wj(θ) = f
(
zTj θ

)
for some function f . (Here, λ ≥ 0 and α ∈ [0, 1] are the tuning parameters

associated with the elastic net. As in the previous chapter, we assume that y and the columns

of X are mean-centerd at zero so that we can avoid fitting an intercept.) The variable θ is a

hyperparameter in RK which the algorithm needs to select. In the final model, zTj θ can be thought

of as an indication of how influential feature j is on the response, while θk represents how important

the kth source of feature information is in identifying which features are important for the prediction

problem.

The rest of this chapter is organized as follows. In Section 3.2, we survey past work on incor-

porating “features of features” in supervised learning. In Section 3.3, we propose a method, the

feature-weighted elastic net (“fwelnet”), which uses the scores in model-fitting. We present connec-

tions to the group lasso and Bayesian estimation in Section 3.4, and illustrate fwelnet’s performance

on simulated data in Section 3.5 and on a real data example in Section 3.6. In Section 3.7, we show

how fwelnet can be used in multi-task learning. We end with a discussion and ideas for future work.

The appendix contains further details and proofs.

3.2 Related work

The idea of assigning different penalty weights for features in the lasso or elastic net objective is

not new. The adaptive lasso (Zou, 2006) assigns feature j a penalty weight wj = 1/|β̂OLSj |γ , where

β̂OLSj is the estimated ordinary least squares (OLS) coefficent for feature j and γ > 0 is some

hyperparameter. However, the OLS solution only depends on X and y and does not incorporate

any external feature information. In the work closest to ours, Bergersen et al. (2011) propose

using weights wj = 1/|ηj(y,X,Z)|q, where ηj is some function (possibly varying for j) and q is a

hyperparameter controlling the shape of the weight function. While the authors present two ideas

for what the ηj ’s could be, they do not give general guidance on how to choose these functions which

could drastically influence the model-fitting algorithm.

There is a correspondence between penalized regression estimates and Bayesian maximum a pos-

teriori (MAP) estimates with a particular prior for the coefficients. Within this Bayesian framework,

some methods propose using external feature information to guide the choice of prior. For example,

van de Wiel et al. (2016) take an empirical Bayes approach to estimate the prior for ridge regression,

while Velten and Huber (2018) use variational Bayes to do so for general convex penalties.

Most previous approaches for penalized regression with external information on the features only

work with specific types of such information. Several methods has been developed to make use

of feature grouping information. Popular methods include the group lasso (Yuan and Lin, 2006)

and the overlap group lasso (Obozinski et al., 2009). IPF-LASSO (integrative lasso with penalty

factors) (Boulesteix et al., 2017) gives each group its own penalty parameter, to be chosen via

cross-validation. Tai and Pan (2007) modify the penalized partial least squares (PLS) and nearest
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shrunken centroids methods to have group-specific penalties.

Other methods have been developed to incorporate “network-like” or feature similarity infor-

mation. The fused lasso (Tibshirani et al., 2005) adds an `1 penalty on the successive differences

of the coefficients to impose smoothness on the coefficient profile. Structured elastic net (Slawski

et al., 2010) generalizes the fused lasso by replacing the `2-squared penalty in elastic net with βTΛβ,

where Λ is a symmetric, positive semi-definite matrix chosen to reflect some a priori known structure

between the features. Li and Li (2008) is a special case of structured elastic net, where Λ is equal

to the normalized Laplacian matrix of the feature network graph. Mollaysa et al. (2017) use the

feature information matrix Z to compute a feature similarity matrix, which is used to construct a

penalty term in the loss criterion. The regularizer encourages the model to give the same output as

long as the total contribution of similar features is the same. We note that this approach implicitly

assumes that the sources of feature information are equally relevant, which may or may not be the

case.

It is not clear how most of the prior work can be generalized to generic sources of feature

information. Our method has the distinction of being able to work directly with real-valued feature

information and to integrate multiple sources of feature information. While van de Wiel et al.

(2016) claim to be able to handle binary, nominal, ordinal and continuous feature information, the

method actually ranks and groups features based on such information and only uses this grouping

information in the estimation of the group-specific penalties. Nevertheless, it is able to incorporate

more than one source of feature information.

3.3 Feature-weighted elastic net (“fwelnet”)

One way to utilize the scores zTj θ in model-fitting is to give each feature a different penalty weight

in the elastic net objective based on its score:

Jλ,α,θ(β) =
1

2
‖y −Xβ‖22 + λ

p∑
j=1

wj(θ)

[
α|βj |+

1− α
2

β2
j

]
,

where wj(θ) = f
(
zTj θ

)
for some function f . Our proposed method, which we call the feature-

weighted elastic net (“fwelnet”), specifies f :

wj(θ) =

∑p
`=1 exp

(
zT` θ

)
p exp

(
zTj θ

) . (3.1)

The fwelnet algorithm seeks the minimizer of this objective function over β:

β̂ = argmin
β

1

2
‖y −Xβ‖22 + λ

p∑
j=1

wj(θ)

[
α|βj |+

1− α
2

β2
j

]
. (3.2)
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There are a number of reasons for this choice of penalty factors. First, when θ = 0, we have

wj(θ) = 1 for all j, reducing fwelnet to the original elastic net. Second, wj(θ) ≥ 1/p for all j and

θ, ensuring that we do not end up with features having negligible penalty. This allows the fwelnet

solution to have a wider range of sparsity across λ hyperparameter values. Third, this formulation

provides theoretical connections which we detail in Section 3.4. Finally, a feature’s score has a

natural interpretation: if zTj θ is relatively large, then wj is relatively small, meaning that feature j

is more important for the response and hence should have smaller penalty.

We illustrate the last property via a simulated example. In this simulation, we have n = 200

observations and p = 100 features which come in groups of 10. The response is a linear combination

of the first two groups with additive Gaussian noise. The coefficient for the first group is 4 while

the coefficient for the second group is −2 so that the first group exhibits stronger correlation to the

response compared to the second group. The “features of features” matrix Z ∈ R100×10 is grouping

information, i.e. zjk = 1{feature j belongs to group k}. Figure 3.1 shows the penalty factors wj that

fwelnet assigns the features. (The hyperparameter θ was determined using Algorithm 2 described in

Section 3.3.1.) As one would expect, the features in the first group have the smallest penalty factor

followed by features in the second group. In contrast, the original elastic net algorithm would assign

penalty factors wj = 1 for all j.
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Figure 3.1: Penalty factors which fwelnet assigns to each feature. n = 200, p = 100 with features
in groups of size 10. The response is a noisy linear combination of the first two groups, with signal
in the first group being stronger than that in the second. As expected, fwelnet’s penalty weights for
the true features (left of blue dotted line) are lower than that for null features. The elastic net would
assign all features a penalty factor of 1 (horizontal red line).



CHAPTER 3. FEATURE-WEIGHTED ELASTIC NET 34

3.3.1 Computing the fwelnet solution

For given values of λ, α and θ, it is easy to solve (3.2): the objective function is convex in β, and β̂

can be found efficiently using algorithms such as coordinate descent. However, to deploy fwelnet in

practice we need to determine the hyperparameter values λ̂ ∈ R, α̂ ∈ R and θ̂ ∈ RK that give good

performance. When K, the number of sources of feature information, is small, one could run the

algorithm for a grid of θ values, then pick the value which gives the smallest cross-validated loss.

Unfortunately, this approach is computationally infeasible for even moderate values of K.

To avoid this computational bottleneck, we propose solving the minimization problem:

minimize
β(λi),θ(λi)

1

m

m∑
i=1

[
1

2
‖y −Xβ(λi)‖22

+ λi

p∑
j=1

wj(θ(λi))

(
α|βj(λi)|+

1− α
2

βj(λi)
2

)]
subject to θ(λ1) = · · · = θ(λm),

where λ1 > λ2 > · · · > λm is a path of λ hyperparameter values. Here, we think of θ as an argument

of the objective function J , and we view minimizing J as a joint function of β and θ as a heuristic to

obtain a good value of θ. However, to maintain the interpretation of θ as a hyperparameter, we force

θ̂ to be the same across all λ values. We propose an alternating minimization (Algorithm 2) to solve

this minimization problem. Step 3(c) finds the optimum solution for β(λ1), . . . ,β(λm) for given

values of θ(λ1), . . . ,θ(λm), while Steps 3(a) and 3(b) does gradient descent for θ(λ1), . . . ,θ(λm)

projected to the constraint set.

Algorithm 2 Fwelnet algorithm

1. Select a value of α ∈ [0, 1] and a sequence of λ values λ1 > . . . > λm.

2. For i = 1, . . . ,m, initialize β(0)(λi) at the elastic net solution for the corresponding λi. Initialize
θ(0) = 0.

3. For k = 0, 1, . . . until convergence:

(a) Set ∆θ to be the component-wise mean of
∂Jλi,α
∂θ

∣∣∣∣
β=β(k),θ=θ(k)

over i = 1, . . . ,m.

(b) Set θ(k+1) = θ(k) − η∆θ, where η is the step size computed via backtracking line search
to ensure that the mean of Jλi,α

(
β(k),θ(k+1)

)
over i = 1, . . . ,m is less than that for

Jλi,α
(
β(k),θ(k)

)
.

(c) For i = 1, . . . ,m, set β(k+1)(λi) = elastic net solution for λi where the penalty factor for
feature j is wj(θ

(k+1)).

Because of the backtracking line search in Step 3(b) and the fact that Step 3(c) solves a convex
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problem, Algorithm 2 is guaranteed to converge, albeit to a stationary point. However, because

Step 2 initializes β̂(λi) at the elastic net coefficients, we usually end up with a good solution. In

our simulations, convergence was almost always reached within 20 iterations, and often one to three

passes gave a sufficiently good solution.

Remark: We also considered an approach where θ was not constrained to be the same across

λ values. While conceptually straightforward, the algorithm was computationally slow and did not

perform as well as Algorithm 2 in prediction. A sketch of this approach is in Appendix B.1.

We have developed an R package, fwelnet, which implements Algorithm 2. Step 3(c) of Algo-

rithm 2 can be done easily by using the glmnet function in the glmnet R package and specifying the

penalty.factor argument. In practice, we use the sequence λ1 > · · · > λm provided by glmnet’s

implementation of the elastic net as this range of λ values covers a sufficiently wide range of models.

(In our package, we allow the user to replace the component-wise mean with the component-wise

median in Step 3(a), and to replace the mean with the median in Step 3(b). We find these options

do not change performance much when the default sequence is used, so we recommend that users

stick with the defaults.)

3.3.2 Extending fwelnet to generalized linear models (GLMs)

It is easy to extend the elastic net to generalized linear models (GLMs) by replacing the RSS term

with the negative log-likelihood of the data:

(β̂0, β̂) = argmin
β0,β

n∑
i=1

`

yi, β0 +

p∑
j=1

xijβj

+ λ

p∑
j=1

[
α|βj |+

1− α
2

β2
j

]
, (3.3)

where `(yi, β0 +
∑
j xijβj) is the negative log-likelihood contribution of observation i. Fwelnet can

be extended to GLMs in a similar fashion:

(β̂0, β̂, θ̂) = argmin
β0,β,θ

n∑
i=1

`

yi, β0 +

p∑
j=1

xijβj

+ λ

p∑
j=1

wj(θ)

[
α|βj |+

1− α
2

β2
j

]
, (3.4)

with wj(θ) as defined in (3.1). Algorithm 2 can be used as-is to solve (3.4). Because θ only appears

in the penalty term, this extension can be implemented easily. We can rely on the glmnet function

for Steps 2 and 3(c), Step 3(a) is the same as before, and Step 3(b) simply requires a function that

allows us to compute `.
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3.4 Theoretical connections

3.4.1 Connection to the group lasso

One common setting where “features of features” arise naturally is when the features come in non-

overlapping groups. Assume that the features in X come in K non-overlapping groups. Let pk

denote the number of features in group k, and let β(k) denote the subvector of β which belongs to

group k. Assume also that y and the columns of X are centered so that β̂0 = 0. In this setting, Yuan

and Lin (2006) introduced the group lasso estimate as the solution to the optimization problem

minimize
β

1

2
‖y −Xβ‖22 + λ

K∑
k=1

∥∥∥β(k)
∥∥∥
2
.

The `2 penalty on features at the group level ensures that features belonging to the same group

are either all included in the model or all excluded from it. Often, the penalty given to group k is

modified by a factor of
√
pk to take into account varying group sizes:

β̂gl,2(λ) = argmin
β

1

2
‖y −Xβ‖22 + λ

K∑
k=1

√
pk

∥∥∥β(k)
∥∥∥
2
.

Theorem 10 below establishes a connection between fwelnet and the group lasso.

Theorem 10. If the “features of features” matrix Z ∈ Rp×K is given by zjk = 1{feature j ∈
group k}, then minimizing the fwelnet objective function (3.2) jointly over β0, β and θ reduces to

argmin
β

1

2
‖y −Xβ‖22 + λ′

K∑
k=1

√
pk

[
α
∥∥β(k)

∥∥
1

+
1− α

2

∥∥β(k)
∥∥2
2

]

=


argmin

β

1
2 ‖y −Xβ‖22 + λ′

∑K
k=1

√
pk
∥∥β(k)

∥∥
2

if α = 0,

argmin
β

1
2 ‖y −Xβ‖22 + λ′

(∑K
k=1

√
pk
∥∥β(k)

∥∥
1

)2
if α = 1,

for some λ′ ≥ 0.

We recognize the α = 0 case as minimizing the residual sum of squares (RSS) and the group lasso

penalty, while the α = 1 case is minimizing the RSS and the `1 version of the group lasso penalty.

The proof of Theorem 10 can be found in Appendix B.2.
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3.4.2 Connection to Bayesian estimation

Regularized estimators can often be thought of as the Bayes posterior mode for a given prior distri-

bution. For example, it is well-known that if the prior and likelihood are given by

β ∼ N (0, τ2I),

y | X,β ∼ N
(
Xβ, σ2I

)
,

for some τ2, σ2 > 0, then the posterior distribution for β is minimized at the ridge regression solution

for λ = σ2/(2τ2). If feature information is available, a better prior might be one where the βj are

exchangeable conditional on the zj ’s, i.e. βj
i.i.d.∼ G(· | zj) for some prior distribution G. One

possible choice is

βj
ind.∼ N

(
0, v2j τ

2
)
, v2j =

p exp
(
zTj θ

)∑p
`=1 exp

(
zT` θ

) , (3.5)

for some fixed θ. With this prior, τ2 is the average prior variance for the βj ’s, while the v2j ’s modulate

the prior variance for each coefficient based on its feature information. The expression for the v2j ’s is

simply softmax applied to the zTj θ’s (scaled by p), a commonly used function to convert a vector of

real values to a probability vector. Features with larger scores zTj θ have correspondingly larger v2j ,

meaning they are more likely to have larger coefficients in the model. Straightforward computation

shows that the posterior mode for β is the fwelnet solution (3.2) with α = 0 and λ = σ2/(2τ2).

Algorithm 2 can be viewed as an empirical Bayes approximation to estimate θ. For other values of

α, the fwelnet solution corresponds to the posterior mode for the following prior on β:

p(βj) ∝ exp

[
−v2j τ2

(
α|βj |+

1− α
2

β2
j

)]
, v2j =

p exp
(
zTj θ

)∑p
`=1 exp

(
zT` θ

) .
This connection also presents a way to incorporate feature information in a fully Bayesian frame-

work: instead of estimating θ from the data, we could impose a prior on it. This direction also gives

us an explicit way to encode beliefs about the relative importance of the sources of side information

for the predictive model.

3.5 A simulation study

We tested the performance of fwelnet against other methods in a simulation study. In the three

settings studied, the true signal is a linear combination of the columns of X, with the true coefficient

vector β being sparse. The response y is the signal corrupted by additive Gaussian noise. In

each setting, we gave different types of feature information to fwelnet to determine the method’s

effectiveness.

For all methods, we used cross-validation (CV) to select the tuning parameter λ. Unless otherwise
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stated, the α hyperparameter was set to 1 (i.e. no `2 squared penalty). To compare methods, we

considered the mean squared error (MSE) MSE = E[(ŷ − µ)2] achieved on 10,000 test points, as

well as the true positive rate (TPR) and false positive rate (FPR) of the fitted models. (ŷ denotes

the model’s prediction while µ denotes the true underlying signal. The oracle model which knows

the true coefficient vector β can compute µ exactly and hence has a test MSE of 0.) We ran each

simulation 30 times to get estimates for these quantities. (See Appendix B.3 for details of the

simulations.)

3.5.1 Setting 1: Noisy version of the true |β|

In this setting, we have n = 100 observations and p = 50 features, with the true signal being a linear

combination of just the first 10 features. The feature information matrix Z has a single column: a

noisy version of |β|.
We compared fwelnet against the lasso (using the glmnet package) and the adaptive lasso (using

the OLS solution as the pilot estimator) across a range of signal-to-noise ratios (SNR) in both the

response y and the feature information matrix Z (see details in Appendix B.3.1). The results are

shown in Figure 3.2. As we would expect, the test MSE figures for the methods decreased as the SNR

in the response increased. Fwelnet performed the best, with improvement over the other methods

increasing as the SNR in Z increased, up to a point. In terms of feature selection, fwelnet appeared

to have similar TPR but smaller FPR.

3.5.2 Setting 2: Grouped data setting

In this setting, we have n = 100 observations and p = 150 features, with the features coming in

15 groups of size 10. The feature information matrix Z ∈ R150×15 contains group membership

information for the features: zjk = 1{feature j ∈ group k}. We compared fwelnet against the lasso,

the adaptive lasso, and the group lasso (using the grpreg package) across a range of signal-to-noise

ratios (SNR) in the response y. (For the adaptive lasso, we used the lasso solution with λ chosen

by CV as the pilot estimator, since the OLS solution is unidentified in this setting.)

We considered two different responses in this setting. The first response was a linear combination

of the features in the first group only, with additive Gaussian noise. The results are depicted in

Figure 3.3. In terms of test MSE, fwelnet was competitive with the group lasso in the low SNR

scenario and edged out the group lasso slightly for the highest SNR setting. In terms of feature

selection, fwelnet had comparable TPR as the group lasso (except in the lowest SNR setting) but

drastically smaller FPR. Fwelnet had better TPR and FPR than the lasso in this case.

The second response was not as sparse in the features: the true signal was a linear combination

of the first 4 feature groups. The results are shown in Figure 3.4. In this case, fwelnet with α fixed

at 1 lags the group lasso slightly in test MSE. It is worth noting that fwelnet with α = 1 performs

appreciably better than the lasso when the SNR is higher. Selecting α via CV improved the test
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Figure 3.2: “Feature of features”: noisy version of the true |β|. n = 100, p = 50. The response is
a linear combination of the first 10 features. As we go from left to right, the signal-to-noise ratio
(SNR) for y increases; as we go from top to bottom, the SNR in Z increases. The left panel shows
the test mean squared error (MSE) figures with the red dotted line indicating the median null test
MSE. In the figure on the right, each point depicts the true positive rate (TPR) and false positive
rate (FPR) of the fitted model for one of 30 simulation runs. Fwelnet performs the best in test MSE,
with the improvement getting larger as the SNR in Z increases, up to a point. Fwelnet appears to
have similar TPR but significantly smaller FPR.
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Figure 3.3: “Feature of features”: grouping data. n = 100, p = 150. The features come in groups
of 10, with the response being a linear combination of the features in the first group. As we go from
left to right, the signal-to-noise ratio (SNR) for y increases. The figure on the left shows the test
mean squared error (MSE) results with the red dotted line indicating the median null test MSE. In
the figure on the right, each point depicts the true positive rate (TPR) and false positive rate (FPR)
of the fitted model for one of 30 simulation runs. Fwelnet performs comparably to the group lasso in
terms of test MSE. Fwelnet has higher TPR than the lasso, and lower FPR than the group lasso.

MSE performance of fwelnet slightly but not enough to outperform the group lasso; it also came at

the cost of very high FPR.
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Figure 3.4: “Feature of features”: grouping data. n = 100, p = 150. The features come in groups of
10, with the response being a linear combination of the first 4 groups. As we go from left to right, the
SNR for y increases. The left figure shows the test MSE results with the red dotted line indicating the
median null test MSE. Fwelnet sets α = 1 while fwelnet CVa selects α via cross-validation. In the
figure on the right, each point depicts the TPR and FPR of the fitted model for one of 30 simulation
runs. Group lasso performs best here. CV for α improves test MSE performance slightly but at the
expense of having very high FPR.
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3.5.3 Setting 3: Noise variables

In this setting, we have n = 100 observations and p = 80 features, with the true signal being a linear

combination of just the first 10 features. The feature information matrix Z consists of 10 noise

variables that have nothing to do with the response. Since fwelnet is adapting to these features, we

expect it to perform worse than comparable methods.

We compare fwelnet against the lasso and the adaptive lasso (using the OLS solution as the pilot

estimator): the results are depicted in Figure 3.5. As expected, fwelnet has higher test MSE than

the lasso, but the decrease in performance is not drastic. The adaptive lasso performs much more

poorly than the other methods. This is likely due to unstable least squares estimates for the weights

due to p being close to n. Fwelnet attained similar FPR and TPR to the lasso.
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Figure 3.5: “Feature of features”: 10 noise variables. n = 100, p = 80. The response is a linear
combination of the first 10 features. Going from left to right, the SNR for y increases. The left
figure shows the test MSE results, with the red dotted line indicating the median null test MSE. In
the right figure, each point depicts the TPR and FPR of the fitted model for one of 30 simulation
runs. Fwelnet only performs slightly worse than the lasso in test MSE, and has similar TPR and
FPR as the lasso.

3.6 Application: Early prediction of preeclampsia

Preeclampsia is a leading cause of maternal and neonatal morbidity and mortality, affecting 5 to

10 percent of all pregnancies. The biological and phenotypical signals associated with late-onset

preeclampsia strengthen during the course of pregnancy, often resulting in a clinical diagnosis after 20

weeks of gestation (Zeisler et al., 2016). An earlier test for late-onset preeclampsia has substantially

higher clinical value as it enables interventions for improvement of maternal and neonatal outcomes

(Jabeen et al., 2011). In this example, we leverage protein data collected in late pregnancy, which is

closer to the onset of preeclampsia but of lower clinical utility, to learn about the proteins most helpful
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for this prediction task, then use this information to build a model using protein measurements from

early in the pregnancy. It is important to note that data from late pregnancy is only used to train

the model: for prediction on new patients, only the samples collected during early pregnancy will

be needed.

We used a dataset of 1,125 plasma proteins measured during various gestational ages of pregnancy

(Erez et al., 2017). The SOMAScan platform used in this dataset produces targeted measurements

of a broad range of proteins that are broadly related to various aspects of human biology. To

maintain the exploratory nature of the study, we did not select specific proteins that are expected

to be related to preeclampsia based on prior studies. We considered time points ≤ 20 weeks “early”

and time points > 20 weeks as “late”. The dataset consisted of 166 patients each having 2 to 6 time

points, for a total of 666 time point observations. Protein measurements were log-transformed to

reduce skewness. We used the following procedure to build a predictive model based on early time

point data only:

1. Patients were split randomly into two equal-sized buckets. For patients in the first bucket, we

only used their late time points (83 patients with 219 time points) while for patients in the

second bucket, we only used their early time points (83 patients with 116 time points).

2. We trained an elastic net logistic regression model on the late time points for patients in the

first bucket to predict whether the patient would have preeclampsia (using the log-transformed

protein measurements for predictors). The hyperparameter α was set to 0.5 and λ was selected

by CV. We extracted model coefficients at the λ value which gave the highest CV area under

the curve (AUC).

3. We trained a fwelnet logistic regression model on the early time points for patients in the

second bucket, using the absolute values of the late time point model coefficients as feature

information. The hyperparameter α was set to 1 and we computed the 10-fold CV AUC for

the entire path of λ values.

When performing CV in Steps 2 and 3, we made sure that observations from one patient all

belonged to the same CV fold to avoid “contamination” of the held-out fold. One can also run the

fwelnet model with additional sources of feature information for each of the proteins.

Figure 3.6 shows a plot of 10-fold CV AUC for the fwelnet model in Step 3 and the baseline lasso

model against the number of features in the model. The lasso obtains a maximum CV AUC of 0.80,

while fwelnet obtains the largest CV AUC of 0.84.

In running the workflow several times, we noted that the results were somewhat dependent on

(i) how the patients were split into the two buckets in Step 1, and (ii) how patients were split into

CV folds when training the models in Steps 2 and 3. We found that if the late time point model

had few non-zero coefficients, then the fwelnet model for early time point data was very similar to

that for the lasso. This matches our intuition: few non-zero coefficients means injecting very little
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Figure 3.6: Early prediction of preeclampsia: Plot of 10-fold cross-validated (CV) area under the
curve (AUC). 10-fold CV AUC is plotted against the number of non-zero coefficients for each model
trained on just early time point data. For each method, the model with highest CV AUC is marked
by a dot. To reduce clutter in the figure, the ±1 standard error bars are drawn for just these models.
Fwelnet achieved higher CV AUC for the same model size, i.e. number of features with non-zero
coefficients.
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additional information through fwelnet’s relative penalty factors. Nevertheless, we did not encounter

cases where running fwelnet gave worse CV AUC than the lasso.

3.7 Using fwelnet for multi-task learning

We turn now to an application of fwelnet to multi-task learning. Here, we have a single model matrix

X but are interested in multiple responses y1, . . . ,yB . If there is some common structure between

the signals in the responses, it can be advantageous to fit models for them simultaneously. This is

especially useful if the responses have low SNR.

We demonstrate how fwelnet can be used to learn better models in the setting with two responses,

y1 and y2. The idea is to use the absolute value of coefficients of one response as the external

information for the other response. That way, a feature which has larger influence on one response is

likely to be given a correspondingly lower penalty weight when fitting the other response. Algorithm 3

presents one possible way of doing so.

Algorithm 3 Using fwelnet for multi-task learning

1. Initialize β
(0)
1 and β

(0)
2 at the lambda.min elastic net solutions for (X,y1) and (X,y2) respec-

tively, that is, the value of the hyperparameter λ which minimizes cross-validated error.

2. For k = 0, 1, . . . until convergence:

(a) Set Z2 =
∣∣∣β(k)

1

∣∣∣. Run fwelnet with (X,y2,Z2) and set β
(k+1)
2 to be the lambda.min

solution.

(b) Set Z1 =
∣∣∣β(k+1)

2

∣∣∣. Run fwelnet with (X,y1,Z1) and set β
(k+1)
1 to be the lambda.min

solution.

We tested the effectiveness of Algorithm 3 (with step 2 run for 3 iterations) on simulated data.

We generate 150 observations with 50 independent features. The signal in response 1 is a linear

combination of features 1 to 10, while the signal in response 2 is a linear combination of features 1

to 5 and 11 to 15. The coefficients are set such that those for the common features (i.e. features 1

to 5) have larger absolute value than those for the features specific to one response. The SNRs in

response 1 and response 2 are 0.5 and 1.5 respectively. (See Appendix B.4 for more details of the

simulation.)

We compared Algorithm 3 against: (i) the individual lasso (ind lasso), where the lasso is run

separately for y1 and y2; and (ii) the multi-response lasso (mt lasso) (Obozinski et al., 2010), where

coefficients belonging to the same feature across the responses are given a joint `2 penalty. Because

of the `2 penalty, a feature is either included or excluded in the model for all the responses at the

same time.

Figure 3.7 shows the results for 50 simulation runs. Fwelnet outpeforms the other two methods in
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test MSE as evaluated on 10,000 test points. The individual lasso performs well for the higher SNR

response but poorly for the lower SNR response. The multi-response lasso is able to borrow strength

from the higher SNR response to obtain good performance on the lower SNR response. However,

because the models for both responses are forced to have the same set of features, performance

suffers on the higher SNR response. Fwelnet has the ability to borrow strength across responses

without being hampered by this restriction.
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Figure 3.7: Application of fwelnet to multi-task learning. n = 150, p = 50. Response 1 is a linear
combination of features 1 to 10, while response 2 is a linear combination of features 1 to 5 and 11
to 15. The SNR for the responses are 0.5 and 1.5 respectively. The left figure shows the test MSE
figures with the red dotted line indicating the median null test MSE. The right figure shows the TPR
and FPR of the fitted model (each point being one of 50 simulation runs). Fwelnet outperforms the
individual lasso and the multi-response lasso in test MSE for both responses. Fwelnet also appears
to have better FPR than the other methods and better TPR than the individual lasso.

3.8 Discussion

We have proposed organizing external information on features, or “features of features”, as a matrix

Z ∈ Rp×K , and modifying model-fitting algorithms by assigning each feature a score, zTj θ, based

on this auxiliary information. The feature-weighted elastic net (“fwelnet”) is one such method: it

imposes a penalty modification factor wj(θ) =
[∑p

`=1 exp
(
zT` θ

)]
/
[
p exp

(
zTj θ

)]
for the elastic net

algorithm.

Fwelnet is widely applicable in that there are no restrictions on the type of feature information

that can be incorporated into Z as long as it is real-valued. As such, we recommend using fwel-

net whenever feature information is available (e.g. grouping information, prior guesses on feature

importance). When the feature information is relevant to the prediction problem, in that it has

some signal on how important a feature is to predicting the response, we expect fwelnet to out-

perform competitor methods. At the same time, simulation setting 3 (Section 3.5.3) shows that

using irrelevant feature information can be detrimental to the fit. In practice we recommend using
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domain knowledge to guide selection of side information for the model. We also recommend fitting

the vanilla elastic net and comparing the CV error of the two methods: this comparison will show

if the feature information was relevant to the prediction problem or not.

There is much scope for future work:

• Interpretation of zTj θ and θ. As noted in the Introduction, zTj θ can be thought of as an

indication of how influential feature j is on the response, since a larger zTj θ corresponds to a

smaller penalty weight wj(θ) (see Equations (3.1) and (3.2)).

The interpretation for θ is not as straightforward. When Z ∈ Rp×K is orthonormal, we can

interpret θk as the relative importance of the kth source of feature information for identifying

important features for the prediction problem. However, this interpretation becomes less clear

when there are correlations between the columns of Z. In the extreme case where there is

multicollinearity in Z, θ is not identified even though zTj θ is unique. These are the same issues

one faces when interpreting OLS coefficients in the presence of feature correlations.

• Different choices of side information Z. We have explored a few different choices of side infor-

mation, including prior coefficient estimates and group membership. It would be interesting to

evaluate fwelnet’s effectiveness when using other types of side information. One natural exten-

sion of group membership is probabilistic group membership, where each feature is assigned a

probability distribution across the K groups. Another extension is overlapping groups, where

each row of Z need not sum to 1. Setting Z as a p × p similarity matrix is another option

which can be thought of as a combination of the two extensions above, with group j being

associated with feature j, and the degree of group membership measured by how similar each

feature is to feature j.

• Whether θ should be treated as a parameter or a hyperparameter, and how to determine its

value. We introduced θ as a hyperparameter for (3.2). This gives us a clear interpretation

for θ described above. However, grid search computation to find its optimal value grows

exponentially with the number of sources of feature information. To avoid this growth, we

suggested a descent algorithm for θ based on its gradient with respect to the fwelnet objective

function. There are other methods for hyperparameter optimization such as random search

(e.g. Bergstra and Bengio (2012)) or Bayesian optimization (e.g. Snoek et al. (2012)) that

could be applied.

One could consider θ as an argument of the fwelnet objective function to be minimized over

jointly with β. This approach gives us a theoretical connection to the group lasso (Sec-

tion 3.4.1). However, we will obtain different estimates of θ for each value of the hyperpa-

rameter λ, which may be undesirable for interpretation. The objective function is also not

jointly convex in θ and β, so different minimization algorithms could end up at different local
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minima. Our attempts to make this approach work (see Appendix B.1) did not fare as well in

prediction performance and was computationally expensive.

• Choice of penalty modification factor. While the penalty modification factor wj(θ) we have

proposed works well in practice and has several desirable properties, we make no claim about

its optimality.

• Extending the use of scores beyond the elastic net. The use of feature scores zTj θ in modifying

feature weights is a general idea that could apply to any supervised learning algorithm. More

work needs to be done on how such scores can be incorporated, with particular focus on how

θ can be learned through the algorithm.

An R language package fwelnet which implements fwelnet is available at https://www.github.

com/kjytay/fwelnet.



Chapter 4

Reluctant Generalized Additive

Models

4.1 Introduction

In the previous two chapters, we proposed modifications of the lasso and the elastic net that leveraged

external information we might have on the features for better prediction and inference. In this

chapter, we propose a modification along a different dimension: the functional form of the model’s

output.

Assume that the response y and the columns of design matrix X are mean-centered at zero so

that we need not fit an intercept term. In the generalized linear model (GLM) setting, the elastic

net assumes that the relationship between the response and the features is

yi ∼ Pµi , µi = g−1(ηi), ηi =

p∑
j=1

βjxij , (4.1)

where g is a link function, {Pµ} is a family of probability distributions indexed by µ, and β1, . . . , βp ∈
R are parameters of the model. The elastic net determines these parameters by minimizing the sum

of the negative log-likelihood (NLL) and the elastic net penalty. While the resulting model is

highly interpretable, it makes the (possibly) unrealistic assumption that each feature influences the

transformed response η in a linear fashion.

Generalized additive models (GAMs), introduced by Hastie and Tibshirani (1986), model the

relationship more flexibily as

yi ∼ Pµi , µi = g−1(ηi), ηi =

p∑
j=1

fj(xij), (4.2)

48
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where the fj(·)’s are unknown component functions, assumed to be smooth or to have low complexity.

Even though the transformed response η can vary with the individual features in a non-linear fashion,

GAMs remain interpretable since, letting Xj ∈ Rn denote the values of the jth feature, the effect

of Xj on η (and hence, on y) does not depend on any Xk with k 6= j.

One drawback of GAMs is that they assume that the response is influenced by every feature

available to the data analyst. When p is large, this seems to be an unreasonable assumption.

In fact, once p ≥ n, GAMs are unidentifiable: we can find two different fits f̂1(·), . . . , f̂p(·) and

f̂ ′1(·), . . . , f̂ ′p(·) such that
∑
j f̂j(xj) =

∑
j f̂
′
j(xj) for all possible (x1, . . . , xp) ∈ Rp. This causes

GAMs to lose their interpretability. An additional problem in this setting is that GAMs will tend

to overfit to the noise in the data. As a result, there has been demand for additive models which

are sparse, i.e. consisting of just a handful of the features available to the data analyst. Previous

methods for estimating sparse additive models, detailed in Section 4.2, have cast model-fitting as an

optimization problem

minimize
f1,...,fp∈F

`(y; f1, . . . , fp) +

p∑
j=1

J(fj), (4.3)

where ` is the negative log-likelihood of the data, J is some penalty function, and F is some space

of allowable functions for the fj ’s.

When building a sparse additive model, the algorithm needs to make a choice: for some signal in

the response, should we attribute it to a linear term in some feature Xj , or should we attribute it to

a non-linear term in some (possibly other) feature Xk? Some of the earlier sparse additive methods

ignore this choice: the fj ’s are all modeled as non-linear functions. This may result in needlessly

complex models when having some of the fj ’s as linear functions would have sufficed. Later methods

recognized this deficiency and have the flexibility to model each fj as either a linear or non-linear

function through clever choices of penalty functions. However, the tradeoff between having a linear

or non-linear function is often implicit and controlled via a tuning parameter.

Inspired by “reluctant interaction modeling” (Yu et al., 2019), we propose a new algorithm for

fitting sparse generalized additive models that has an explicit preference toward linear relationships

over non-linear ones. As a guiding principle, we prefer a model to contain only effects that are

linear in the original set of features: it is “reluctant” to included non-linearities in the model unless

they add to predictive performance. To operationalize this, we first construct a sparse model for

η(y) with just linear features. Next, we use the residual from the first step to construct new non-

linear features. Finally, we fit another sparse model for η(y) utilizing both the linear and non-linear

features.

The rest of the paper is organized as follows: in the next section, we review previous methods

which have sought to estimate sparse additive models from the given data. In Section 4.3, we give a

brief review of the ideas in Yu et al. (2019) and introduce our method, called reluctant generalized

additive modeling (RGAM), in greater detail. In Section 4.4, we point to parameter choices that
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a practitioner should be cognizant of when using RGAM, as well as the computational advantages

of the method. We demonstrate the method on synthetic and real data examples in Section 4.5,

briefly discuss RGAM’s effective degrees of freedom in Section 4.6 and end off with a discussion in

Section 4.7.

4.2 Related work

This review closely follows that in Chouldechova and Hastie (2015) and Petersen and Witten (2019).

As mentioned in the introduction, previous methods for fitting sparse additive models involve solving

an optimization problem

minimize
f1,...,fp∈F

`(y; f1, . . . , fp) +

p∑
j=1

J(fj),

with different methods choosing different penalty functions J(·) and different family of functions

F . The Component Selection and Smoothing Operator (COSSO) (Lin and Zhang, 2006) models the

fj ’s as belonging to a reproducing kernel Hilbert space (RKHS) and penalizes the sum of the RKHS

norms of the component functions. Ravikumar et al. (2007) proposed the Sparse Additive Model

(SpAM), which is essentially a functional version of the group lasso (Yuan and Lin, 2006). For each

j, fj is modeled as a linear combination of d basis functions fj = βj1gj1 + · · ·+ βjdgjd. Letting Bj

denote the n× d matrix with (Bj)k` = gj`(xkj), SpAM penalizes the sum of `2 norms of the Bjβj ,

i.e. J(fj) = λ ‖Bjβj‖2 for some hyperparameter λ ≥ 0. Meier et al. (2009) parametrize each fj in a

similar fashion, and propose a penalty which is the quadratic mean of the component function norm

and a second derivative smoothness penalty, summed over the component functions. Sadhanala and

Tibshirani (2017) proposed Additive Models with Trend Filtering, where the penalty for fj is the

(discrete) total variation of its kth (discrete) derivative, k being an integer hyperparameter chosen

by the user. The fit for each variable is restricted to piecewise polynomials of degreee k. Additive

models with trend filtering are a generalization of the Fused Lasso Additive Model (FLAM) (Petersen

et al., 2016), where each fj is either all zero or piecewise constant with a small number of adaptively

chosen knots.

While these earlier methods are able to capture non-linear fits between the features and the

response, they will continue to do so even when a linear fit would have sufficed. (Additive models

with trend filtering will only give a linear fit when k = 1.) In these cases, the methods above may

overfit to the data, resulting in less interpretable models with possibly worse predictive performance.

To address this issue, more recent methods have the ability to decide whether to model a feature

linearly or non-linearly, given that it is included in the model. This ability is achieved with the

use of more complex penalty functions. For example, the Sparse Partially Linear Additive Model

(SPLAM) (Lou et al., 2016) does so using a hierarchical group lasso penalty (Yan and Bien, 2017),

while Generalized Additive Model Selection (GAMSEL) (Chouldechova and Hastie, 2015) does so
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with an overlap group lasso penalty (Obozinski et al., 2009). Most recently, Petersen and Witten

(2019) introduced Sparse Partially Linear Additive Trend Filtering (SPLAT), which allows the knots

for the non-linear fits to be adaptively chosen. It does so using a three-term penalty for each fj that

is a combination of `1 and `2 norms of different quantities.

4.3 Reluctant generalized additive modeling (“RGAM”)

Our method, which we call Reluctant Generalized Additive Modeling (RGAM), was inspired by the

ideas behind Reluctant Interaction Modeling (Yu et al., 2019). We give a brief overview of reluctant

interaction modeling here.

4.3.1 Reluctant interaction modeling

Yu et al. (2019) considers the following interaction model:

y =

p∑
j=1

βjXj +

p2∑
k=1

γkZk + ε, (4.4)

where the Zk’s index the q = (p2 + p)/2 two-way interaction terms Xj ∗Xj′ , 1 ≤ j ≤ j′ ≤ p. The

key difficulty in fitting such a model is to pick a small but relevant subset of the q interaction terms.

Instead of the commonly used hierarchical principle, where one includes an interaction only if the

corresponding main effects are also included, Yu et al. (2019) propose a new guiding principle:

The reluctant interaction selection principle: One should prefer a main effect

over an interaction if all else is equal.

One way to interpret this principle is to fit the response as well as possible using only the main

effects; only after that do we include interaction terms to capture signal in the response which could

not be captured by the main effects. Yu et al. (2019)’s full algorithm, implemented in the sprinter

R package, is detailed in Algorithm 4. The authors note that the lasso (Tibshirani, 1996) in Steps

1 and 3 could be substituted by other regression methods.

4.3.2 Reluctant generalized additive modeling

We adapt the reluctant interaction selection principle for GAMs:

The reluctant non-linear selection principle: One should prefer a linear term

over a non-linear term if all else is equal.
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Algorithm 4 Reluctant interaction model algorithm

Input: Design matrix X ∈ Rn×p, response y ∈ Rn, screening hyperparameter η > 0.

1. Fit the lasso of y on X to get coefficients β̂. Compute the residuals r = y −Xβ̂, using the λ
hyperparameter selected by cross-validation.

2. For the hyperparameter η > 0, screen the interaction terms based on the residual:

Îη =
{
k ∈ {1, . . . , q} : sd(r)|cor(Zk, r)| > η

}
, (4.5)

where sd(r) denotes the sample standard deviation of r and cor(Zk, r) denotes the sample
correlation between Zk and r.

3. Fit the lasso of y on X and ZÎη .

To operationalize this principle, we mimic the three-step process of reluctant interaction mod-

eling. In Step 1, we fit the response as well as we can using only the main effects, and in Step 3,

we re-fit the response on all the main effects and the additional features which were constructed

in Step 2. Where our proposal differs from reluctant interaction modeling is in the construction

of the additional features in Step 2. Given a hyperparameter d ∈ N, for each j ∈ {1, . . . , p}, we

build a smoothing spline with d degrees of freedom of r, the residual from Step 1, on Xj . This new

feature, which we denote by f̂j , captures signal in the residual using a non-linear relationship with

Xj . Full details of our proposal, which we call Reluctant Generalized Additive Modeling (RGAM),

can be found in Algorithm 5. While the lasso in Steps 1 and 3 could be substituted with a different

regression method, we recommend it strongly in this context as it performs variable selection, giving

us the sparsity we want for the final model.

Algorithm 5 Reluctant generalized additive model algorithm

Input: Design matrix X ∈ Rn×p, response y ∈ Rn, degrees of freedom hyperparameter d ∈ N,
scaling hyperparameter γ ∈ [0, 1] and a path of lasso hyperparameters λ1 > · · · > λm ≥ 0. (Note
that the lasso hyperparameters will only be used in Step 3.)

1. Fit the lasso of y on X to get coefficients β̂. Compute the residuals r = y −Xβ̂, using the λ
hyperparameter selected by cross-validation.

2. For each j ∈ {1, . . . , p}, fit a smoothing spline with d degrees of freedom of r on Xj which

we denote by f̂j . Rescale f̂j so that sd(f̂j)/mean(sd(Xj)) = γ. Here, sd(f̂j) denotes the

sample standard deviation of f̂j , while mean(sd(Xj)) denotes the mean of the sample standard
deviations of the Xj ’s across j = 1, . . . , p. (When X is standardized, the denominator is equal

to 1.) Let F ∈ Rn×p denote the matrix whose columns are the f̂j ’s.

3. Fit the lasso of y on X and F for the path of tuning parameters λ1 > · · · > λm ≥ 0.

Our proposal is “reluctant” to include non-linearities in a few ways. First, as with reluctant
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interaction modeling, the non-linear features are only allowed to model signal which the main effects

were unable to capture in Step 1. Second, by rescaling the non-linear features so that their sample

standard deviation is just a fraction γ compared to that of the main effects, it means that the

non-linearity must be strong enough so that its associated coefficient is important enough to survive

variable selection by the lasso in Step 3. Third, if we think of the non-linear feature for variable j as a

linear combination of spline basis functions for variable j, the construction in Step 2 forces this linear

combination to be fixed up to a global scaling factor. As such, we expect RGAM to have smaller

effective degrees of freedom than methods which allow these coefficients to vary independently of

each other. We explore this last point in more detail in Section 4.6.

We note that in Algorithm 5, we construct non-linear counterparts for all p features in Step 2. In

some settings, we may wish to be conservative in allowing non-linear features into the model. One

can tweak Step 2 of Algorithm 5 to achieve this outcome. For example, let A = {j : β̂j 6= 0} be the

active set of features after Step 1, i.e. the set of features which were selected by the lasso on the

main effects. We could constrain Step 2 to compute non-linear features only for j ∈ A. This version

of RGAM, which we call RGAM SEL, weakly assumes a hierarchical principle where we expect a

non-linear version of a variable to have an effect only if we expect the variable to have a linear effect

in the first place. (The hierarchy is not strictly enforced as it is still possible for the non-linear

version of variable j to be selected without variable j itself being selected in Step 3.) As a side

benefit, RGAM SEL is more computationally efficient than RGAM since Step 3 involves computing

the lasso solution for p + |A|, rather than 2p, features. In our simulations, RGAM SEL is 1.5 to 3

times as fast as RGAM, but does not appear to perform as well in terms of test error.

4.4 Computation

We have developed an R package, relgam, which implements our proposal. Steps 1 and 3 of the

RGAM algorithm are implemented using the cv.glmnet and glmnet functions from the glmnet

package (Friedman et al., 2010), while Step 2 is implemented with the smooth.spline() function

in the stats package.

The rgam function (which fits our model) has an argument init nz which admits a vector of

indices. For a given feature index j, a non-linear feature is computed for Xj if it appears in init nz

or if it appears in the active set A. The default behavior is to compute non-linear features for all

p variables, i.e. init nz = 1:p. To compute non-linear features for just the active set of Step 1,

the user can set init nz to the empty vector: init nz = c(). Hence, this argument allows rgam to

compute the solutions to both RGAM (as in Algorithm 5) and RGAM SEL (defined in the previous

section). The init nz argument is also useful if the user has some prior information on the relevance

of the variables to the response: variables with high relevance can always have non-linear features

included in Step 3 by including them in the vector passed to init nz.
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With respect to hyperparameters, the user can specify the λ, γ and d values using the lambda,

gamma and df options respectively. rgam selects a path of λ values in the same manner as the

glmnet function in the glmnet package; we recommend that the user stick with this choice of λ

values. The default value for gamma is 0.8 if init nz = c() (i.e. RGAM SEL), and is 0.6 otherwise.

We recommend that the user perform cross-validation (CV) to pick an optimal value of gamma. In

our simulations, we find that values of gamma below 0.5 usually result in models without any non-

linearities. The default value for df is set conservatively at 4. We recommend using CV to pick an

optimal value of df but over just a handful of values as the model is not that sensitive to this choice.

4.4.1 Extension to other likelihood functions

In Section 4.2, we noted that previous methods for fitting sparse GAMs solve an optimization

problem of the form

minimize
f1,...,fp∈F

`(y; f1, . . . , fp) +

p∑
j=1

J(fj).

The optimization is typically performed via an iterative algorithm such as coordinate descent or

block coordinate descent. In theory, these methods work with a large class of likelihoods `. For

example, in the case of GLMs, ` is repeatedly approximated by a quadratic term `′ and the sum

`′+
∑p
j=1 J(fj) is minimized until convergence is attained. Implementing this procedure in practice,

however, can be tedious. This is also the case for extending the methods to Cox regression models,

where ` is the partial likelihood of the data.

Unlike previous methods, the RGAM algorithm (Algorithm 5) can be extended easily to different

likelihood functions. As long as the likelihood can be handled by the glmnet function in the glmnet

package through its family Argument, Steps 1 and 3 of the RGAM algorithm can be adapted

immediately by passing that family argument to glmnet. The only remaining work is to compute

the analog of the residual in Step 2, which is much easier than solving a modified optimization

problem. At the time of writing, apart from the Gaussian likelihood for continuous responses, we

have working software implementing the logistic, Poisson and Cox regression models for binary,

count and survival data respectively.

4.4.2 Timing comparison

Since RGAM uses k-fold CV of the lasso in Step 1 (our software sets k = 5 as a default) and the

lasso on all the linear and non-linear features in Step 2, we expect RGAM to take at least k + 1

times as long as glmnet, which implements the lasso. Nevertheless, we find that RGAM is very

competitive with other sparse additive modeling techniques in terms of computational efficiency.

Figure 4.1 presents the absolute time taken to fit the models for various values of n (number

of observations) and p (number of features), while Figure 4.2 presents these times relative to that
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for RGAM. (Recall that RGAM refers to procedure in Algorithm 5 while RGAM SEL refers to the

procedure where non-linear features are only constructed for features in the active set from Step 1.)

Each point or bar is the mean of 5 simulation runs. We see that GAMSEL takes anywhere from 1.5

to 8 times as long as RGAM for model fitting, with the factors being bigger for larger simulation

settings. The computation burden for SpAM and RGAM are comparable, while RGAM SEL can

often be faster than these two methods.

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

n: 100 n: 500 n: 1000 n: 5000

100 200 300 400 500 250 500 750 1000 0 1000 2000 3000 4000 5000 1000 2000 3000 4000 5000

10−2

10−1

100

101

102

103

p

T
im

e 
(s

)

method ● lasso SpAM GAMSEL RGAM RGAM_SEL

Model fitting times for various n & p

Figure 4.1: Model fitting times (in seconds) for sparse additive methods, for different combinations
of n (number of observations) and p (number of features). Each point is the mean of 5 simulation
runs. Note that the y-axis is on a logarithmic scale.
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4.5 Simulated and real data examples

We conducted an extensive simulation study comparing our method with the lasso and GAMSEL.

(We did not compare RGAM with SPLAM (Lou et al., 2016) and SPLAT (Petersen and Witten,

2019) as we did not find R packages implementing these methods at the time of writing.) We use the

null model, i.e. mean of the responses in the training dataset, as a baseline. Appendix C.1 contains

full details and results on the simulation; we present some illustrative snippets here. For RGAM,

we considered two versions: one where non-linear features were constructed for all p main effects,

and one where non-linear features were constructed for only the main effects in the active set from

Step 1.

In all the simulations that follow, the feature valuesXij are independent draws from the Unif[−1, 1]

distribution. The response is yi = µi+ εi = f(Xi1, . . . , Xip) + εi, where f is a function that depends

on the simulation and the εi’s are independent N (0, σ2) draws. The data generating process for the

signal is such that the linear and non-linear components are orthogonal. The noise variance σ2 is

set so that the data has the desired signal-to-noise ratio (SNR).

For all methods, 5-fold CV was performed to select the hyperparameter λ only: default values

were used for all other hyperparameters. Each boxplot in Figures 4.3, 4.4 and 4.5 is the result of

30 simulation runs. The test error metric is mean-squared error where the target is the true signal

value, i.e. E[(ŷtest − µtest)2] instead of E[(ŷtest − ytest)2]. (With this test error metric, the oracle

which knows the data generating model would have a test error of 0.) Test error is estimated using

5,000 test points.

4.5.1 Simulation 1: Small n and p, hierarchical non-linear signal

In this setting, we have 100 observations and 200 features with the signal being a function of the

first five features. The setting is “hierarchical” in the sense that all the features that make up

the non-linear component of the signal also have a linear component. More explicitly, the signal

is f(X1, . . . ,Xp) =
∑5
j=1[Xj + 2(3X2

j − 1)/3]. The SNR of the overall response is set to 2, with

roughly equal SNR in each of the non-linear and linear components.

The results are shown in Figure 4.3. Both versions of RGAM outperform the other methods,

with RGAM SEL being the best. This makes intuitive sense: since the signal is hierarchical, the

main effects selected by RGAM SEL for Step 2 will be smaller than p, yet will very likely include

the true main effects. Thus, in Step 3, the true non-linear features only have to compete with a

smaller set of features to enter the final model as opposed to RGAM, where they have to compete

with all p non-linear features.
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Figure 4.3: Hierarchical setting: n = 100, p = 200. The left-most plot presents test error as a
fraction of the null model’s test error. The middle plot presents the number of features each model
selected, with the two numbers on top of the boxplots being the median number of linear components
and non-linear components selected. The right-most plot presents the number of true features each
method selected, with the total number of true features indicated by the dotted red line. RGAM SEL
performs best in test error due to the hierarchical nature of the non-linearities.

4.5.2 Simulation 2: Small n and p, purely non-linear signal

In this setting, we again have 100 observations and 200 features, with the signal being a function

of the first five features. However, the signal, f(X1, . . . ,Xp) =
∑5
j=1 2(5X3

j − 3Xj), only depends

on non-linear functions of the features which are orthogonal to the feature itself. Since the Xj ’s are

drawn from a Unif[−1, 1] distribution, we have Cov(5X3
j − 3Xj ,Xj) = 0. The SNR of the response

is set to 2.

The results are shown in Figure 4.4. Only RGAM is able to outperform the null model. This

is expected for the lasso since it only captures linear effects. GAMSEL can include a non-linear

effect in a particular variable only if its corresponding linear effect is included too, and thus does

not perform well either. Without linear effects in the signal, Step 1 of the RGAM algorithm cannot

pick out the true features reliably. RGAM SEL thus cannot reliably pick out the correct non-linear

features for Step 3 of the algorithm. RGAM circumvents this problem by constructing non-linear

features for all p features.

4.5.3 Simulation 3: Large n and p, hierarchical and non-hierarchical non-

linear signal

In this setting, we have 1,000 observations and 500 features. The signal is f(X1, . . . ,Xp) =∑20
j=1 Xj +

∑20
j=1 3(5X3

j − 3Xj)/4 +
∑28
j=21(3X2

j − 1). The first 20 features have both linear and

non-linear components featuring in the signal, while the next 8 features only have non-linear com-

ponents in the signal. The SNR of the overall response is set to 1, with each of the three sums in
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Figure 4.4: Fully non-linear setting: n = 100, p = 200, SNR = 2. The left-most plot presents test
error as a fraction of the null model’s test error. The middle plot presents the number of features
each model selected, with the two numbers on top of the boxplots being the median number of linear
components and non-linear components selected. The right-most plot presents the number of true
features each method selected, with the total number of true features indicated by the dotted red line.
Only RGAM is able to outperform the null model as there are no linear effects in the true signal.

the expression above having roughly equal SNR.

The results are shown in Figure 4.5. In this setting RGAM clearly outperforms all the other

methods, and performs well despite low SNR. This is partially due to its ability to pick out the

non-linear features that do not have a corresponding linear component in the signal. RGAM SEL

exhibits roughly the same test error performance as GAMSEL, but selects much fewer linear and

non-linear components in its predictive model.

4.5.4 Prostate cancer dataset

We apply RGAM to a microarray dataset from a prostate cancer study carried out by Singh et al.

(2002), and which was analyzed in Efron (2012). The data consists of expression levels for 6, 033

genes for 102 men. 50 men were normal control subjects while the remaining 52 men were prostate

cancer patients. The goal is to predict which subjects had prostate cancer based on the gene

expression levels.

We compare RGAM’s cross-validated performance with that of the lasso and GAMSEL. Each of

these methods was run on a path of λ values, with other hyperparameters set to their default values.

The fitting times for GAMSEL, RGAM and RGAM SEL were 72, 32 and 3.5 seconds respectively.

The results are shown in Figure 4.6. For the same model size, both versions of RGAM outperform

the lasso and GAMSEL in terms of both cross-validated deviance and cross-validated area under

the curve (AUC).
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Figure 4.5: Large setting, with hierarchical and non-hierarchical non-linear signals: n = 1, 000,
p = 500, SNR = 1. The left-most plot presents test error as a fraction of the null model’s test
error. The middle plot presents the number of features each model selected, with the two numbers
on top of the boxplots being the median number of linear components and non-linear components
selected. The right-most plot presents the number of true features each method selected, with the
total number of true features indicated by the dotted red line. RGAM performs best in terms of
test error; RGAM SEL is comparable to GAMSEL but selects much fewer linear and non-linear
components.

●
●
●

●

●

●

●
●

●
●

●
●

●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●
●

●
●

●
●

●
●

●
●
●
● ● ● ●● ● ●● ● ●●● ● ●● ●●● ●●●●● ●● ●●●●● ●●●●●●●●●●●●●● ●●●●● ● ●●● ●●●●●●●●

●

0 10 20 30 40 50 60 70

0.
7

0.
8

0.
9

1.
0

1.
1

1.
2

1.
3

1.
4

5−fold CV deviance vs. # non−zero features

# non−zero features

5−
fo

ld
 C

V
 d

ev
ia

nc
e

● ●●● ●
●
●

●
●

●
●

●
●

●
●

●
●
●
●
●

●
●
●

●
●
●
●

●
●

●
●
●

●
●

●
●

●
●

●
●●
●
●
● ●

●
●●
● ●● ●● ● ●●● ● ● ●●●● ● ● ● ●● ●●● ● ●●●● ●●●●● ●● ● ●●●●●●●●●●●●●●●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●
●
●
●

●
●

●
●

●
●

●
●
●
●

●
●
●

●
●
●

●
●
●●●●● ● ●●●●●●●● ● ● ●● ●●● ●●●● ●●●●●●●●●● ●●●●● ● ●● ●●●●●● ●●●●●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●
●

●
●

●
●
●
●
●
●

●
●
●

●
●

●
●

●
●

●
● ●● ●●●● ● ● ● ●●●● ●● ●●● ● ●●●●●● ●● ●● ●●● ●●●●● ●● ●●●●●●●● ●● ●●●● ●●

lasso
GAMSEL
RGAM
RGAM_SEL

0 10 20 30 40 50 60 70

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

5−fold CV AUC vs. # non−zero features

# non−zero features

5−
fo

ld
 C

V
 A

U
C

lasso
GAMSEL
RGAM
RGAM_SEL

Figure 4.6: 5-fold cross-validation results for the prostate cancer dataset. The left panel shows the
cross-validated deviance (with error bars showing ±1 standard deviation) while the right panel shows
the cross-validated area under the curve (AUC). The x-axis represents the number of features selected
at each value in the lambda path.
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4.6 Degrees of freedom

When introducing RGAM, we claimed that, intuitively, the way in which the non-linear features are

constructed in Step 2 gives the non-linear components less degrees of freedom than giving Step 3 d

spline basis functions for each Xj . The degrees of freedom measures the flexibility of the fit: the

larger the degrees of freedom, the more closely the fit matches the response values. We explore this

claim in more detail here.

Given a vector of response values y with corresponding fits ŷ, Efron (1986) defines the degrees

of freedom as

df(ŷ) =

∑n
i=1 Cov(yi, ŷi)

σ2
.

Here, n is the number of observations, and yi and ŷi denote the ith entry of y and ŷ respectively. We

can estimate this quantity via Monte Carlo simulation under different data generating processes. For

each simulation setting, assume that we have p features X1, . . . ,Xp ∈ Rn whose values we consider

to be fixed (i.e. not random), and assume the true data generating process for the response is

y∗ = µ + σz, z ∼ N (0, In×n), (4.6)

where µ ∈ Rn is a function of the Xj ’s, and hence is considered fixed for that simulation setting.

(Simulation settings differ in how µ is generated from the Xj ’s and in the value of σ.) For each

simulation setting, we generate response vectors y∗b according to (4.6) for b = 1, . . . , B, with B

representing the number of Monte Carlo samples we are taking. For each y∗b, we fit a predictive

model to this data, generating predictions ŷ∗b. This gives us the Monte Carlo estimate

df ≈
n∑
i=1

Ĉov(ŷ∗i , y
∗
i )/σ2,

Ĉov(ŷ∗i , y
∗
i ) =

1

B

B∑
b=1

[ŷ∗bi − ai][y∗bi − µi],

where the ai’s can be any fixed known constants (usually taken to be 0).

We compare the estimated degrees of freedom for unpenalized versions of RGAM and GAMSEL,

i.e. setting the hyperparameter λ = 0. Figure 4.7 shows the estimated degrees of freedom for

the unpenalized procedures (with degrees of freedom d = 4) and OLS of y on the Xj ’s for three

different settings. (For GAMSEL, each feature was given 6 basis functions; the default value for

gamsel in the gamsel package is 10.) As predicted in theory, OLS on the Xj ’s (with intercept) has

p + 1 degrees of freedom. The degrees of freedom for unpenalized GAMSEL seems to be relatively

constant at roughly p times the value of the degrees of freedom hyperparameter, even as the non-

linear component’s contribution to the SNR of the signal changes. Unpenalized RGAM has roughly

the same degrees of freedom when the true underlying signal is completely linear. As the proportion
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of SNR in the true underlying signal coming from the non-linear component increases, RGAM’s

degrees of freedom decreases. We currently do not have a good explanation for this phenomenon. The

degrees of freedom for unpenalized RGAM SEL is substantially lower than both that of unpenalized

GAMSEL and unpenalized RGAM.
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Figure 4.7: Estimated degrees of freedom across three different (n, p) settings. The points are the
Monte Carlo estimates from B = 100 simulation runs, and the error bars are ±1 standard devi-
ation for the sample mean. For unpenalized GAMSEL, each feature was given 6 basis functions.
Unpenalized RGAM has smaller degrees of freedom than unpenalized GAMSEL. As the non-linear
component of the true signal increases (in terms of SNR), unpenalized RGAM’s degrees of freedom
appears to decrease.

4.7 Discussion

Reluctant generalized additive modeling (RGAM) is a three-step algorithm for fitting sparse GAMs.

The model’s prediction is allowed to vary linearly or non-linearly with each input variable. RGAM is

guided by the reluctant non-linear selection principle, preferring linear effects over non-linear effects,

only including the latter if they add to predictive performance. Unlike existing methods for sparse

GAMs, RGAM can be extended easily to binary, count and survival data.

The three-step framework of Algorithm 5 is extremely flexible. As previously noted, one may

replace the lasso method in Steps 1 and 3 with a regression method of one’s choosing. We note that

Step 2 is highly customizable as well: we seek to model the residual in this step, and we can use

any method to do so. In our software implementation we model the residual with a cubic smoothing

spline for each Xj ; other spline methods could be used. If we believe that there are discontinuities

in the relationship between the response y and Xj , we could model the residual as a piece-wise
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constant function of Xj . There are even more possibilities if we are willing to allow interactions

between different input variables. For example, we could combine RGAM with reluctant interaction

modeling by adding the interaction terms chosen by reluctant interaction modeling in Step 3 of

Algorithm 5. Another possibility is to fit the residual to random trees, much like a random forest

(Breiman, 2001); Step 3 then selects the most appropriate linear effects and trees for the final model.

We leave the implementation and exploration of these more complex methods for future work.

An R language package relgam which implements RGAM is available on the CRAN repository.



Chapter 5

Extending the glmnet Package

5.1 Introduction

In this chapter we turn to the practical matter of computing the solution for the elastic net penalty.

Recall that our data is of the form (x1, y1), . . . , (xn, yn), where yi ∈ R is the target and xi =

(xi,1, . . . , xi,p)
T ∈ Rp is a vector of potential predictors. (In this chapter, we do not assume that the

features and responses are mean-centered at zero.) The elastic net model assumes that the response

can be modeled as a linear combination of the covariates, i.e. yi = β0 + xTi β for some coefficient

vector β ∈ Rp and intercept β0 ∈ R, which are the solution to the following minimization problem:

(β̂0, β̂) = argmin
(β0,β)∈Rp+1

[
1

2n

n∑
i=1

(yi − β0 − xTi β)2 + λ

(
1− α

2
‖β‖22 + α‖β‖1

)]
, (5.1)

where λ ≥ 0 is a tuning parameter and α ∈ [0, 1] is a higher level hyperparameter1. We always

fit a path of models in λ, but set a value of α depending on the type of prediction model we

want. For example, if we want ridge regression (Hoerl and Kennard, 1970) we set α = 0 and if we

want the lasso (Tibshirani, 1996) we set α = 1. If we want a sparse model but are worried about

correlations between features, we might set α close to but not equal to 1. The final value of λ is

usually chosen via cross-validation: we select the coefficients corresponding to the λ value giving

smallest cross-validated error as the final model.

The elastic net can be extended easily to generalized linear models (GLMs) (Nelder and Wedder-

burn, 1972) and Cox proportional hazards models (Cox, 1972). Instead of solving the minimization

problem (5.1), the RSS term in the objective function is replaced with a negative log-likelihood term

1If the square were removed from the `2-norm penalty, it would be more natural to have 1−α instead of (1−α)/2
as its mixing parameter. The factor of 1/2 compensates for the fact that a squared `2-norm penalty is used, in the
sense that the gradient of the penalty with respect to β can be seen as a convex combination of the `1 and `2 penalty
terms. We note also that there is a one-to-one correspondence between these two parameterizations for the penalty.

63
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or a negative log partial likelihood term respectively.

The glmnet R package (Friedman et al., 2010) contains efficient functions for computing the

elastic net solution for an entire path of values λ1 > · · · > λm. The minimization problems are

solved via cyclic coordinate descent (van der Kooij, 2007), with the core routines programmed in

Fortran for computational efficiency. Earlier versions of the package contained specialized Fortran

subroutines for a handful of popular GLMs and the Cox model for right-censored survival data. The

package includes functions for performing K-fold cross-validation (CV), plotting coefficient paths

and CV errors, and predicting on future data. The package can also accept the predictor matrix

in sparse matrix format: this is especially useful in certain applications where the predictor matrix

is both large and sparse. In particular, this means that we can fit unpenalized GLMs with sparse

predictor matrices, something the glm function in the stats package cannot do.

From version 4.1 and later, glmnet is able to compute the elastic net regularization path for all

GLMs, Cox models with (start, stop] data and strata, and a simplified version of the relaxed lasso

(Hastie et al., 2020).

Several other packages currently exist in R for computing the lasso and elastic net regularization

paths, although it is not always the main focus of the package. The model families and penalties

supported varies widely from package to package: see Tables 5.1 and 5.2 for a summary. The

glmnet package effectively supersedes the elasticnet (Zou and Hastie, 2020), glmpath (Park and

Hastie, 2018) and lars (Hastie and Efron, 2013) packages. The lasso2 package (Lokhorst et al., 2020)

solves the constrained version of the lasso for a single constraint value (as opposed to a path), and is

the only other package that supports GLMs other than the Gaussian, binomial and Poisson GLMs

with canonical links. The ncvreg package (Breheny and Huang, 2011) can compute the solution

paths for the lasso penalty, minimax concave penalty (MCP) (Zhang, 2010) and smoothly clipped

absolute deviation (SCAD) penalty (Fan and Li, 2001), but not for the elastic net penalty. The

package which is closest to glmnet in functionality is the penalized package (Goeman et al., 2018).

It has the ability to use R’s formula syntax to define the model and it can compute the fused

lasso solution (Tibshirani et al., 2005) as well. However, it is more limited in the model families

it supports. The biglasso package (Zeng and Breheny, 2017) specializes in fitting the elastic net

regularization path for big data that cannot be loaded into memory. The bmrm package (Prados,

2019) computes the solution for a wide variety of loss functions with `1 or `2 regularization, but not

both `1 and `2 regularization at the same time and only for a single point on the regularization path.

For survival analysis, the ahaz package (Gorst-Rasmussen and Scheike, 2012) can fit semiparametric

additive hazards models, which the Cox model is a special case of, with the lasso penalty but not

the elastic net penalty. It works with both right-censored and (start, stop] data, but not with tied

survival times. Finally, the relaxo package (Meinshausen, 2012) computes the solution path for the

original relaxed lasso (Meinshausen, 2007) for the OLS model only.

Friedman et al. (2010) gives details on how the glmnet package computes the elastic net solution
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GLMs Cox models
Gaussian Binomial Poisson All other

GLMs
Right-
censored
data

(start,
stop]
data

Strata

glmnet X X X X X X X
ahaz X X
biglasso X X X
bmrm X X
elasticnet X
glmpath X X X X
lars X
lasso2 X X X X
ncvreg X X X X
penalized X X X X
relaxo X

Table 5.1: Table of model families that each R package can fit. Only the glmnet and lasso2 packages
can fit GLMs other than the Gaussian, binomial and Poisson GLMs with canonical links. Only
the glmnet and ahaz packages can fit Cox models with (start, stop] data, and only glmnet can fit
stratified Cox models.

Lasso (`1) Ridge (`2-squared) Elastic
net

Other penalties Formula
syntax?

glmnet X X X
ahaz X SCAD
biglasso X X X
bmrm X X
elasticnet X X X
glmpath X
lars X
lasso2 X X
ncvreg X MCP, SCAD
penalized X X X Fused lasso X
relaxo X

Table 5.2: Table of penalties that each R package can fit, as well as whether the package works with
R’s formula syntax. MCP refers to the minimax concave penalty, and SCAD refers to the smoothly
clipped absolute deviation penalty. glmnet does not support formula syntax as the primary use
case for regularized models is when the design matrix X is “wide”, i.e., many more features than
observations. Formula syntax also does not mix well with column-specific function arguments such
as exclude, penalty.factor, lower.limits and upper.limits.

for ordinary least squares regression, logistic regression and multinomial logistic regression, while

Simon et al. (2011) explains how the package fits regularized Cox models for right-censored data.

This chapter builds on these two earlier works. In Section 5.2, we provide a brief overview of

GLMs, explain how the elastic net penalty can be applied to all GLMs and give details on the

software implementation. In Section 5.3, we describe extensions to Cox models with (start, stop]
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GLM family / Re-
gression type

Response type Representation in R

Gaussian R gaussian()

Logistic {0, 1} binomial()

Probit {0, 1} binomial(link = "probit")

Quasi-Binomial {0, 1} quasibinomial()

Poisson N0 = {0, 1, . . . } poisson()

Quasi-Poisson N0 quasipoisson()

Negative binomial N0 MASS::negative.binomial(theta = 3)

Gamma R+ = [0,∞) Gamma()

Inverse Gaussian R+ inverse.gaussian()

Tweedie Depends on variance
power parameter

statmod::tweedie()

Table 5.3: Examples of generalized linear models (GLMs) and their representations in R.

data and strata. We conclude with a summary. For more code examples and greater detail on

how to use functions in the glmnet package, see the vignettes on the official glmnet website https:

//glmnet.stanford.edu/.

5.2 Regularized generalized linear models

5.2.1 Overview of generalized linear models

Generalized linear models (GLMs) (Nelder and Wedderburn, 1972) are a simple but powerful exten-

sion of OLS. A GLM consists of 3 parts:

• A linear predictor: ηi = xTi β,

• A link function: ηi = g(µi), and

• A variance function as a function of the mean: V = V (µi).

The user gets to specify the link function g and the variance function V . For one-dimensional

exponential families, the family determines the variance function, which, along with the link, are

sufficient to specify a GLM. More generally, modeling can proceed once the link and variance func-

tions are specified via a quasi-likelihood approach (see McCullagh and Nelder (1983) for details);

this is the approach taken by the quasi-binomial and quasi-Poisson models. The OLS model is a

special case, with link g(x) = x and constant variance function V (µ) = σ2 for some constant σ2.

More examples of GLMs are listed in Table 5.3.

The GLM parameter β is determined by maximum likelihood estimation. Unlike OLS, there is

no closed form solution for β̂. Rather, it is typically computed via an iteratively reweighted least

squares (IRLS) algorithm known as Fisher scoring. In each iteration of the algorithm we make a



CHAPTER 5. EXTENDING THE GLMNET PACKAGE 67

quadratic approximation to the negative log-likelihood (NLL), reducing the minimization problem

to a weighted least squares (WLS) problem. For GLMs with canonical link functions, the negative

log-likelihood is convex in β, Fisher scoring is equivalent to the Newton-Raphson method and is

guaranteed to converge to a global minimum. For GLMs with non-canonical links, the negative

log-likelihood is not guaranteed to be convex2. Also, Fisher scoring is no longer equivalent to the

Newton-Raphson method and is only guaranteed to converge to a local minimum.

It is easy to fit GLMs in R using the glm function from the stats package; the user can specify

the GLM to be fit using family objects. These objects capture details of the GLM such as the link

function and the variance function. For example, the code below shows the family object associated

with probit regression model:

R> class(binomial(link = "probit"))

[1] "family"

R> str(binomial(link = "probit"))

List of 12

$ family : chr "binomial"

$ link : chr "probit"

$ linkfun : function (mu)

$ linkinv : function (eta)

$ variance : function (mu)

$ dev.resids: function (y, mu, wt)

$ aic : function (y, n, mu, wt, dev)

$ mu.eta : function (eta)

$ initialize: language ... # code to set up objects needed for the family

$ validmu : function (mu)

$ valideta : function (eta)

$ simulate : function (object, nsim)

- attr(*, "class")= chr "family"

The linkfun, linkinv, variance and mu.eta functions are used in fitting the GLM, and the

dev.resids function is used in computing the deviance of the resulting model. By passing a class

"family" object to the family argument of a glm call, glm has all the information it needs to fit

the model. Here is an example of how one can fit a probit regression model in R:

R> library("glmnet")

2It is not true that the negative log-likelihood is always non-convex for non-canonical links. For example, it can
be shown via direct computation that the negative log-likelihood for probit regression is convex in β.
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R> data("BinomialExample")

R> fit <- glm(y ~ x, data = BinomialExample,

+ family = binomial(link = "probit"))

5.2.2 Extending the elastic net to all GLM families

To extend the elastic net to GLMs, we replace the RSS term in (5.1) with a negative log-likelihood

term:

(β̂0, β̂) = argmin
(β0,β)∈Rp+1

[
− 1

n

n∑
i=1

`
(
yi, β0 + xTi β

)
+ λ

(
1− α

2
‖β‖22 + α‖β‖1

)]
, (5.2)

where `
(
yi, β0 + xTj β

)
is the log-likelihood term associated with observation i. We can apply the

same strategy as for GLMs to minimize this objective function. The key difference is that instead

of solving a WLS problem in each iteration, we solve a penalized WLS problem.

The algorithm for solving (5.2) for a path of λ values is described in Algorithm 6. Note that in

Step 2(a), we initialize the solution for λ = λk at the solution obtained for λ = λk−1. This is known

as a warm start : since we expect the solution at these two λ values to be similar, the algorithm will

likely require fewer iterations than if we initialized the solution at zero.

Algorithm 6 Fitting GLMs with elastic net penalty

1. Select a value of α ∈ [0, 1] and a sequence of λ values λ1 > . . . > λm.

2. For k = 1, . . . ,m:

(a) Initialize (β̂
(0)
0 (λk), β̂(0)(λk)) = (β̂0(λk−1), β̂(λk−1)). For k = 1, initialize

(β̂
(0)
0 (λk), β̂(0)(λk)) = (0,0). (Here, (β̂0(λk), β̂(λk)) denotes the elastic net solution at

λ = λk.)

(b) For t = 0, 1, . . . until convergence:

i. For i = 1, . . . , n, compute η
(t)
i = β̂

(t)
0 (λk) + β̂(t)(λk)Txi and µ

(t)
i = g−1

(
η
(t)
i

)
.

ii. For i = 1, . . . , n, compute working responses and weights

z
(t)
i = η

(t)
i +

(
yi − µ(t)

i

)/dµ(t)
i

dη
(t)
i

, w
(t)
i =

(
dµ

(t)
i

dη
(t)
i

)2 /
V
(
µ
(t)
i

)
. (5.3)

iii. Solve the penalized WLS problem

(β̂
(t+1)
0 (λk), β̂(t+1)(λk))

= argmin
(β0,β)∈Rp+1

[
1

2n

n∑
i=1

w
(t)
i

(
z
(t)
i − β0 − xTi β

)2
+ λk

(
1− α

2
‖β‖22 + α‖β‖1

)]
.

(5.4)
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5.2.3 Implementation details

There are two main approaches we can take in implementing Algorithm 6. In the original imple-

mentation of glmnet, the entire algorithm was implemented in Fortran for specific GLM families. In

version 4.0 and later, we added a second implementation which implemented just the computational

bottleneck, the penalized WLS problem in Step 2(b)iii, in Fortran, with the rest of the algorithm

implemented in R. Here are the relative merits and disadvantages of the second approach compared

to the first:

X Because the formulas for the working weights and responses in (5.3) are specific to each GLM,

the first approach requires a new Fortran subroutine for each GLM family. This is tedious

to manage, and also means that users cannot fit regularized models for their bespoke GLM

families. The second approach allows the user to pass a class "family" object to glmnet: the

working weights and responses can then be computed in R before the Fortran subroutine solves

the resulting penalized WLS problem.

X As written, Algorithm 6 is a proximal Newton algorithm with a constant step size of 1, and

hence it may not converge in certain cases. To ensure convergence, we can implement step-

size halving after Step 2(b)iii: as long as the objective function (5.2) is not decreasing, set

β̂(t+1)(λk)← β̂(t)(λk) +
[
β̂(t+1)(λk)− β̂(t)(λk)

]
/2 (with a similar formula for the intercept).

Since the objective function involves a log-likelihood term, the formula for the objective func-

tion differs across GLMs, and the first approach has to maintain different subroutines for

step-size halving. For the second approach, we can write a single function that takes in the

class "family" object (along with other necessary parameters) and returns the objective func-

tion value.

× It is computationally less efficient than the first approach because (i) R is generally slower than

Fortran, and (ii) there is overhead associated with constant switching between R and Fortran.

Some timing comparisons for Gaussian and logistic regression with the default parameters are

presented in Figure 5.1. The second approach is 10 to 15 times as slow than the first approach.

× Since each GLM family has its own set of Fortran subroutines in the first approach, it allows

for special computational tricks to be employed in each situation. For example, with family =

"gaussian", the predictors can be centered once upfront to have zero mean and Algorithm 6

can be run ignoring the intercept term.

We stress that both approaches have been implemented in glmnet. Users should use the first

implementation for the most popular GLM families including OLS (Gaussian regression), logistic

regression and Poisson regression (see glmnet’s documentation for the full list of such families), and

use the second implementation for all other GLM families. For example, the code below shows two

equivalent ways to fit a regularized Poisson regression model:
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Figure 5.1: The top plot compares model fitting times for family = "gaussian" and family

= gaussian() for a range of problem sizes, while the plot below compares that for family =

"binomial" and family = binomial(). Each point is the mean of 5 simulation runs. Note that
both the x and y axes are on the log scale.
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R> data("PoissonExample")

R> x <- PoissonExample$x

R> y <- PoissonExample$y

R> fit1 <- glmnet(x, y, family = "poisson")

R> fit2 <- glmnet(x, y, family = poisson())

R> cbind(coef(fit1, s = 0.1), coef(fit2, s = 0.1))

21 x 2 sparse Matrix of class "dgCMatrix"

1 1

(Intercept) 0.097117743 0.096014186

V1 0.600969943 0.601083898

V2 -0.963561440 -0.963849601

...

V18 . .

V19 -0.016139939 -0.016215082

V20 0.011030660 0.010915409

The first call specifies the GLM family as a character string to the family argument, invoking the

first implementation. The second call passes a class "family" object to the family argument instead

of a character string, invoking the second implementation. One would never run the second call in

practice though, as it returns the same result as the first call but takes longer to fit. (We note that the

coefficients returned for the two models differ slightly because they use different fitting algorithms

and have different convergence criteria. We can tighten the convergence criteria by lowering the

thresh argument: when we do this we will have greater agreement between the two models.)

The example below fits a regularized quasi-Poisson model that allows for overdispersion, a family

that is only available via the second approach:

R> glmnet(x, y, family = quasipoisson())

5.2.4 Details on the penalized WLS subroutine

Since the penalized WLS problem in Step 2(b)iii of Algorithm 6 is the computational bottleneck,

we elected to implement it in Fortran. Concretely, the subroutine solves the problem

minimize
(β0,β)∈Rp+1

1

2n

n∑
i=1

wi
(
zi − β0 − xTi β

)2
+ λk

p∑
j=1

γj

(
1− α

2
β2
j + α|βj |

)
(5.5)

subject to Lj ≤ βj ≤ Uj , j = 1, . . . , p. (5.6)

This is the same problem as (5.4) except for two things. First, the penalty placed on each coefficient

βj has its own multiplicative factor γj . (Note that (5.6) reduces to (5.4) if γj = 1 for all j, which is
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the default value for the glmnet function.) This allows the user to place different penalty weights on

the coefficients. An instance where this is especially useful is when the user always wants to include

feature j in the model: in that case the user could set γj = 0 so that βj is unpenalized. Second,

the coefficient βj is constrained to lie in the interval [Lj , Uj ]. (glmnet’s default is Lj = −∞ and

Uj = ∞ for all j, i.e. no constraints on the coefficients.) One example where these constraints are

useful is when we want a certain βj to always be non-negative or always non-positive.

The Fortran subroutine solves (5.6) by cyclic coordinate descent: see Friedman et al. (2010) for

details. Here we describe one major computational trick that was not covered in that paper: the

application of strong rules (Tibshirani et al., 2012).

In each iteration of cyclic coordinate descent, the solver has to loop through all p features to

update the corresponding model coefficients. This can be time-consuming if p is large, and is

potentially wasteful if the solution is sparse: most of the βj would remain at zero. If we know a

priori which predictors will be “active” at the solution (i.e. have βj 6= 0), we could perform cyclic

coordinate descent on just those coefficients and leave the others untouched. The set of “active”

predictors is known as the active set. Strong rules are a simple yet powerful heuristic for guessing

what the active set is, and can be combined with the Karush-Kuhn-Tucker (KKT) conditions to

ensure that we get the exact solution. (The set of predictors determined by the strong rules is known

as the strong set.) We describe the use of strong rules in solving (5.6) fully in Algorithm 7.

Algorithm 7 Solving penalized WLS (5.6) with strong rules

Assume that we are trying to solve for β̂(λk) for some k = 1, . . . ,m, and that we have already

computed β̂(λk−1). (If k = 1, set β̂(λk−1) = 0.)

1. Initialize the strong set Sλk = {j : β̂(λk−1)j 6= 0}.

2. Check the strong rules: for j = 1, . . . , p, include j in Sλk if∣∣∣xTj {y −Xβ̂(λk−1)
}∣∣∣ > α [λk − (λk−1 − λk)] γj .

3. Perform cyclic coordinate descent only for features in Sλk .

4. Check that the KKT conditions hold for each j = 1, . . . , p. If the conditions hold for all j, we
have the exact solution. If the conditions do not hold for some features, include them in the
strong set Sλk and go back to Step 3.

Finally, we note that in some applications, the design matrix X is sparse. In these settings,

computational savings can be reaped by representing X in a sparse matrix format and performing

matrix manipulations with this form. To leverage this property of the data, we have a separate

Fortran subroutine that solves (5.6) when X is in sparse matrix format.
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5.2.5 Other useful functionality

In this section, we mention other use functionality that the glmnet package provides for fitting elastic

net models.

For fixed α, glmnet solves (5.2) for a path of λ values. While the user has the option of specifying

this path of values using the lambda option, it is recommended that the user let glmnet compute the

sequence on its own. glmnet uses the arguments passed to it to determine the value of λmax, defined

to be the smallest value of λ such that the estimated coefficients would be all equal to zero3. The

program then computes λmin such that the ratio λmin/λmax is equal to lambda.min.ratio (default

10−2 if the number of variables exceeds the number of observations, 10−4 otherwise). Model (5.2) is

then fit for nlambda λ values (default 100) starting at λmax and ending at λmin which are equally

spaced on the log scale.

In practice, it common to choose the value of λ via cross-validation (CV). The cv.glmnet function

is a convenience function that runs CV for the λ tuning parameter. The returned object has class

"cv.glmnet", which comes equipped with plot, coef and predict methods. The plot method

produces a plot of CV error against λ (see Figure 5.2 for an example.) As mentioned earlier, we

prefer to think of α as a higher level hyperparameter whose value depends on the type of prediction

model we want. Nevertheless, the code below shows how the user can perform CV for α manually

using a for loop and extract the value of α giving the smallest CV error. Care must be taken to

ensure that the same CV folds are used across runs for the CV errors to be comparable.

R> data("QuickStartExample")

R> x <- QuickStartExample$x

R> y <- QuickStartExample$y

R> alphas <- c(1, 0.8, 0.5, 0.2, 0)

R> fits <- list()

R> set.seed(1)

R> fits[[1]] <- cv.glmnet(x, y, keep = TRUE)

R> foldid <- fits[[1]]$foldid

R> for (i in 2:length(alphas)) {

+ fits[[i]] <- cv.glmnet(x, y, alpha = alphas[i], foldid = foldid)

+ }

R> best_cvm <- unlist(lapply(fits, function(fit) min(fit$cvm)))

R> alphas[which.min(best_cvm)]

[1] 1

3We note that when α = 0, λmax is infinite, i.e. all coefficients will always be non-zero for finite λ. To avoid such
extreme values of λmax, if α < 0.001 we return the λmax value for α = 0.001.
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Figure 5.2: Example output for plotting a cv.glmnet object: a plot of CV error against log(λ). The
error bars correspond to ±1 standard error. The left vertical line corresponds to the minimum error
while the right vertical line corresponds to the largest value of λ such that the CV error is within
one standard error of the minimum. The top of the plot is annotated with the size of the models,
i.e. the number of predictors with non-zero coefficient.

The returned cv.glmnet object contains estimated standard errors for the model CV error at

each λ value. (We note that the method for obtaining these estimates is crude, and the estimates

are generally too small due to correlations across CV folds; see Bates et al. (2021).) By default,

the predict method returns predictions for the model at the "lambda.1se" value, i.e. the value

of λ that gives the most regularized model such that the CV error is within one standard error

of the minimum. To get predictions at the λ value which gives the minimum CV error, the s =

"lambda.min" argument is passed.

R> set.seed(1)

R> cfit <- cv.glmnet(x, y)

R> predict(cfit, x)

1

[1,] -1.33820168

[2,] 2.50786936

[3,] 0.56371947

...

[98,] -2.59959545
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[99,] 4.68516614

[100,] -0.75782622

R> predict(cfit, x, s = "lambda.min")

1

[1,] -1.36474902

[2,] 2.56860130

[3,] 0.57058790

...

[98,] -2.74205637

[99,] 5.12461067

[100,] -1.07513903

The glmnet and cv.glmnet functions have an exclude argument which accepts a vector of indices,

indicating which variables should be excluded from the fit, i.e., get zeros for their coefficients. More

intriguingly, the exclude argument can also accept a function. The idea is that varibles can be

filtered based on some property before any models are fit. One use case for this is in genomics,

where we often want to exclude features which are too sparse, being non-zero for the vast majority

of observations. The code below shows the two different ways of using the exclude argument. They

return the same result except for the function call that produced the fit.

R> set.seed(1)

R> x[sample(seq(length(x)), 1600)] <- 0

R> filter <- function(x, ...) which(colMeans(x == 0) > 0.8)

R> exclude <- filter(x)

R> fit1 <- glmnet(x, y, exclude = exclude)

R> fit2 <- glmnet(x, y, exclude = filter)

R> all.equal(fit1, fit2)

[1] "Component "call": target, current do not match when deparsed"

The real power of assigning a function to the exclude argument is in performing CV. If a filtering

function is given as the exclude argument, cv.glmnet will apply that function separately to each

training fold, hence accounting for any bias that may be incurred by the variable filtering. This is

not possible when assigning a vector of indices to exclude: in that case, the excluded variables are

forced to be the same across folds.

In large data settings, it may take some time to fit the entire sequence of elastic net models.

glmnet and cv.glmnet come equipped with a progress bar which can be displayed with the argument

trace.it = TRUE. This gives the user a sense of how model fitting is progressing.
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The glmnet package provides a convenience function bigGlm for fitting a single unpenalized GLM

but allowing all the options of glmnet. In particular, the user can set upper and/or lower bounds on

the coefficients, and can provide the x matrix in sparse matrix format: options that are not available

for the stats::glm function.

R> data("BinomialExample")

R> x <- BinomialExample$x

R> y <- BinomialExample$y

R> fit <- bigGlm(x, y, family = "binomial")

R> which(coef(fit) < -1)

[1] 4 5 6 7 9 11 12 13 14 18 19 20 21 22 25 27 28 30

R> fit <- bigGlm(x, y, family = "binomial", lower.limits = -1)

R> which(coef(fit) < -1)

integer(0)

5.3 Regularized Cox proportional hazards models

We assume the usual survival-analysis framework. Instead of having yi ∈ R as a response, we have

instead (yi, δi) ∈ R+ × {0, 1}. Here yi is the observed time for observation i, and δi = 1 if yi is the

failure time and δi = 0 if it is the right-censoring time. The Cox proportional hazards model (Cox,

1972) is a commonly used model for the relationship between the predictor variables and survival

time. It assumes a semi-parametric form for the hazard function

hi(t) = h(t)ex
T
i β,

where hi(t) is the hazard for observation i at time t, h is the baseline hazard for the entire population

of observations, and β ∈ Rp is the vector of coefficients to be estimated. Let t1 < · · · < tm denote

the unique failure times and let j(i) denote the index of the observation failing at time ti. (Assume

for the moment that the yi’s are unique.) If yj ≥ ti, we say that observation j is at risk at time

ti. Let Ri denote the risk set at time ti. The coefficient vector β is estimated by maximizing the

partial likelihood

L(β) =

m∏
i=1

ex
T
j(i)β∑

j∈Ri e
xTj β

. (5.7)
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It is the conditional likelihood that the failure occurs for observation j(i) given all the observations at

risk. Maximizing the partial likelihood is equivalent to minimizing the negative log partial likelihood

−`(β) =
2

n

m∑
i=1

−xTj(i)β + log

∑
j∈Ri

ex
T
j β

 . (5.8)

We put a negative sign in front of ` so that ` denotes the log partial likelihood, and the scale factor

2/n is included for convenience. Note also that the model does not have an intercept term β0, as it

cancels out in the partial likelihood. Simon et al. (2011) proposed an elastic-net regularization path

version for the Cox model, as well as Algorithm 8 for solving the minimization problem.

Algorithm 8 Fitting Cox models with elastic net penalty

1. Select a value of α ∈ [0, 1] and a sequence of λ values λ1 > . . . > λm. Define β̂(λ0) = 0.

2. For ` = 1, . . . ,m:

(a) Initialize β̂(λ`) = β̂(λ`−1).

(b) For t = 0, 1, . . . until convergence (outer loop):

i. For k = 1, . . . , n, compute η
(t)
k = β̂(λ`)

Txk.

ii. For k = 1, . . . , n, compute

`′
(
η(t)
)
k

= δk − eη
(t)
k

∑
i∈Ck

 1∑
j∈Ri e

η
(t)
j

 , (5.9)

`′′
(
η(t)
)
k,k

=
∑
i∈Ck

eη(t)k
∑
j∈Ri e

η
(t)
j −

(
eη

(t)
k

)2
(∑

j∈Ri e
η
(t)
j

)2
 , (5.10)

w
(t)
k = −`′′

(
η(t)
)
k,k

, (5.11)

z
(t)
k = η

(t)
k +

`′
(
η(t)
)
k

`′′
(
η(t)
)
k,k

, (5.12)

where Ck is the set of failure times i such that ti < yk (i.e. times for which observation
k is still at risk.)

iii. Solve the penalized WLS problem (inner loop):

β̂(λ`) = argmin
β∈Rp

[
1

2

n∑
k=1

w
(t)
k

(
z
(t)
k − xTk β

)2
+ λ`

(
1− α

2
‖β‖22 + α‖β‖1

)]
.

Algorithm 8 has the same structure as Algorithm 6 except for different formulas for computing

the working responses and weights. (We note that these formulas implicitly approximate the Hessian
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of the log partial likelihood by a diagonal matrix with the Hessian’s diagonal entries.) This means

that we can leverage the fast implementation of the penalized WLS problem in Section 5.2.4 for

an efficient implementation of Algorithm 8. (As a small benefit, it also means that we can fit

regularized Cox models when the design matrix X is sparse.) Such a model can be fit with glmnet

by specifying family = "cox". The response provided needs to be a Surv object from the survival

package (Therneau, 2020).

R> data("CoxExample")

R> glmnet(CoxExample$x, CoxExample$y, family = "cox")

Call: glmnet(x = CoxExample$x, y = CoxExample$y, family = "cox")

Df %Dev Lambda

1 0 0.00 0.236800

2 1 0.18 0.215700

3 3 0.60 0.196600

...

47 24 5.87 0.003279

48 24 5.87 0.002988

49 24 5.87 0.002722

The computation of these wk’s and zk’s can be a computational bottleneck if not implemented

carefully: since the Ck and Ri have O(n) elements, a naive implementation takes O(n2) time.

Simon et al. (2011) exploit the fact that, once the observations are sorted in order of the observed

times yi, the risk sets are nested (Ri+1 ⊆ Ri for all i) and the wk’s and zk’s can be computed in

O(n) time.

If our data contains tied observed times, glmnet uses the Breslow approximation of the partial

likelihood for ties (Breslow, 1972) and maximizes the elastic net-regularized version of this approxi-

mation instead. See Simon et al. (2011) for details.

5.3.1 Extending regularized Cox models to (start, stop] data

Instead of working with right-censored responses, the Cox model can be extended to work with

responses which are a pair of times (called the “start time” and “stop time”), with the possibility of

the stop time being censored. This is an instantiation of the counting process framework proposed

by Andersen and Gill (1982), and the right-censored data set-up is a special case with the start

times all being equal to zero.
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As noted in Therneau and Grambsch (2000), (start, stop] responses greatly increase the flexibility

of the Cox model, allowing for

• Time-dependent covariates,

• Time-dependent strata,

• Left truncation,

• Multiple time scales,

• Multiple events per subject,

• Independent increment, marginal, and conditional models for correlated data, and

• Various forms of case-cohort models.

From a data analysis viewpoint, this extension amounts to requiring just one more variable: the

time variable is replaced by (start, stop] variables, with (start, stop] indicating the interval

where the unit is at risk. The survival package provides the function tmerge to aid in the creation

of such datasets.

For this more general setup, inference for β can proceed as before. The formulas for the partial

likelihood and negative log partial likelihood (Equations (5.7) and (5.8)) remain the same; what

changes is the definition of what it means for an observation to be at risk at time ti. If we let

(y1j , y2j ] denote the (start, stop] times for observation j, then observation j is at risk at time ti

if and only if ti ∈ (y1j , y2j ]. Similarly, the elastic net-regularized version of the Cox model for

(start, stop] data can be fitted using Algorithm 8 with this new definition of what it means for an

observation to be at risk at a failure time.

With (start, stop] data, it is no longer true that the risk sets are nested. For example, if

ti < y1j < ti+1 < y2j , then j ∈ Ri+1 but j /∈ Ri. However, as Algorithm 9 shows, it is still possible

to compute the working responses and weights in O(n log n) time. In fact, only the ordering of

observations (Step 1) requires O(n log n) time: the rest of the algorithm requires just O(n) time.

Since the ordering of observations never changes, the results of Step 1 can be cached, meaning that

only the first run of Algorithm 9 requires O(n log n) time, and future runs just need O(n) time.

The differences between right-censored data and (start, stop] data for Cox models are hidden

from the user, in that the function call for (start, stop] data is exactly the same as that for right-

censored data. The difference is in the type of Surv object that is passed for the response y. glmnet

checks for the Surv object type before routing to the correct internal subroutine.

We illustrate this new functionality on the bladder2 dataset from the survival package. We will

fit a regularized Cox model for the time to recurrence based on the treatment type (rx), the initial

number of tumors (number) and the size of the largest initial tumor (size).
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Algorithm 9 Computing working responses and weights for Algorithm 8

Input: ηj = xTj β̂ (where β̂ is the current estimate for β), (y1j , y2j ], δj for j = 1, . . . , n. For simplicity,
assume that the observations are ordered by ascending stop time, i.e. y21 < · · · < y2n. As before,
let t1 < · · · < tm denote the failure times in increasing order.

1. Get the ordering for the observations according to start times. Let start(j) denote the index
for the observation with the jth earliest start time.

2. Compute the risk set sums RSSi =
∑
j∈Ri e

ηj , i = 1, . . . ,m using the following steps:

(a) For j = 1, . . . , n, set RSSj ←
∑n
`=j e

η` .

(b) Set curr ← 0, i← m, start idx← n.

(c) While i > 0 and start idx > 0:

i. If y1start(start idx) < ti, set RSSj(i) ← RSSj(i) − curr and i← i− 1.

ii. If not, set curr ← curr + eηstart(start idx) and start idx← start idx− 1.

(d) Take just the elements of RSS corresponding to death times, i.e. set RSSi ← RSSj(i).

3. Compute the partial sums RSKk =
∑
i∈Ck 1/RSSi, k = 1, . . . , n using the following steps:

(a) For i = 1, . . . ,m, set RDi ←
∑i
`=1 1/RSSi. Set RD0 ← 0.

(b) For k = 1, . . . , n, set Dk ←
∑k
`=1 δ`.

(c) For k = 1, . . . , n, set RSKk ← RDDk .

(d) Set curr ← 0, i← 1, start idx← 1.

(e) While i ≤ m and start idx ≤ n:

i. If y1start(start idx) < ti, set RSKstart(start idx) ← RSKstart(start idx) − curr and
start idx← start idx+ 1.

ii. If not, set curr ← curr + 1/RSSi and i← i+ 1.

4. Compute the partial sums RSKSQk =
∑
i∈Ck 1/RSS2

i , k = 1, . . . , n in a similar manner as
Step 3.

5. Compute `′(η)k amd `′′(η)k,k using the formulas (5.9) and (5.10):

`′(η)k = δk − eηk ·RSKk, `′′(η)k,k = (eηk)
2 ·RSKSQk − eηk ·RSKk.

6. Compute the working responses and weights using the formulas (5.11) and (5.12).
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R> library("survival")

R> head(bladder2)

id rx number size start stop event enum

1 1 1 1 3 0 1 0 1

2 2 1 2 1 0 4 0 1

3 3 1 1 1 0 7 0 1

4 4 1 5 1 0 10 0 1

5 5 1 4 1 0 6 1 1

6 5 1 4 1 6 10 0 2

We start by creating the (start, stop] response with survival::Surv:

R> y <- with(bladder2, Surv(start, stop, event))

R> head(y)

[1] (0, 1+] (0, 4+] (0, 7+] (0,10+] (0, 6] (6,10+]

The code for fitting the regularized Cox model is then exactly the same as the code we would have

used if the response was right-censored:

R> x <- as.matrix(bladder2[, 2:4])

R> glmnet(x, y, family = "cox")

Call: glmnet(x = x, y = y, family = "cox")

Df %Dev Lambda

1 0 0.00 0.194800

2 1 0.34 0.177500

3 1 0.61 0.161700

...

41 3 2.67 0.004715

42 3 2.67 0.004296

43 3 2.68 0.003914

5.3.2 Stratified Cox models

An extension of the Cox model is to allow for strata. These strata divide the units into disjoint

groups, with each group having its own baseline hazard function but having the same values of β.
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Specifically, if the units are divided into K strata, then the stratified Cox model assumes that a unit

in stratum k has the hazard function

hi(t) = hk(t)ex
T
i β,

where hk(t) is the shared baseline hazard for all units in stratum k. In several applications, allowing

different subgroups to have different baseline hazards approximates reality more closely. For example,

it might be reasonable to have different baseline hazards based on gender in clinical trials, or a

separate baseline for each center in multi-center trials.

In this setting, the negative log partial likelihood is

`(β) =

K∑
k=1

`k(β),

where `k(β) is exactly (5.8) but considering just the units in stratum k. Since the negative log

partial likelihood decouples across strata (conditional on β), regularized versions of stratified Cox

models can be fit using a slightly modified version of Algorithm 8.

To fit an unpenalized stratified Cox model, the survival package has a special strata function

that allows users to specify the strata variable in formula syntax. Since glmnet does not work with

formulas, we needed a different approach for specifying strata. To fit regularized stratified Cox

models in glmnet, the user needs to add a strata attribute to the response y. glmnet checks for

the presence of this attribute and if it is present, it fits a stratified Cox model. We note that the

user cannot simply add the attribute manually because R drops attributes when subsetting vectors.

Instead, the user should use the stratifySurv function to add the strata attribute. (stratifySurv

creates an object of class "stratifySurv" that inherits from the class "Surv", ensuring that glmnet

can reassign the strata attribute correctly after any subsetting.) The code below shows an example

of how to fit a regularized stratified Cox model with glmnet; there are a total of 1,000 observations,

with the first 500 belonging to the first strata and the rest belonging to the second strata.

R> data("CoxExample")

R> x <- CoxExample$x

R> y <- CoxExample$y

R> strata <- c(rep(1, 500), rep(2, 500))

R> y2 <- stratifySurv(y, strata)

R> glmnet(x, y2, family = "cox")

Call: glmnet(x = x, y = y2, family = "cox")
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Df %Dev Lambda

1 0 0.00 0.235500

2 2 0.23 0.214600

3 3 0.69 0.195500

...

47 24 6.57 0.003262

48 24 6.57 0.002972

49 25 6.58 0.002708

5.3.3 Plotting survival curves

The beauty of the Cox partial likelihood is that the baseline hazard, h0(t), is not required for

inference on the model coefficients β. However, the estimated hazard is often of interest to users.

The survival package already has a well-established survfit method that can produce estimated

survival curves from a fitted Cox model. glmnet implements a survfit method for regularized

Cox models fit by glmnet by creating the coxph object corresponding to the model and calling

survival::survfit.

The code below is an example of calling survfit for coxnet objects for a particular value of the

λ tuning parameter (in this case, λ = 0.05). Note that we had to pass the original design matrix x

and response y to the survfit call: they are needed for survfit.coxnet to reconstruct the required

coxph object. The survival curves are computed for the individuals represented in newx: we get one

curve per individual, as seen in Figure 5.3.

R> set.seed(1)

R> nobs <- 100; nvars <- 15

R> x <- matrix(rnorm(nobs * nvars), nrow = nobs)

R> ty <- rep(rexp(nobs / 5), each = 5)

R> tcens <- rbinom(n = nobs, prob = 0.3, size = 1)

R> y <- Surv(ty, tcens)

R> fit <- glmnet(x, y, family = "cox")

R> sf_obj <- survfit(fit, s = 0.05, x = x, y = y, newx = x[1:2, ])

R> plot(sf_obj, col = 1:2, mark.time = TRUE, pch = "12")

The survfit method is available for Cox models fitted by cv.glmnet as well. By default, the

survival curves are computed for the lambda.1se value of the λ hyperparameter. The user can use

the code below to compute the survival curve at the lambda.min value:

R> set.seed(1)

R> cfit <- cv.glmnet(x, y, family = "cox", nfolds = 5)
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Figure 5.3: An illustration of the plotted survfit object. One survival curve is plotted for each
individual represented in the newx argument.

R> survfit(cfit, s = "lambda.min", x = x, y = y, newx = x[1:2, ])

Call: survfit.cv.glmnet(formula = cfit, s = "lambda.min", x = x, y = y,

newx = x[1:2, ])

n events median

1 100 33 1.6

2 100 33 1.6

5.4 Summary

In this chapter, we have shown how to extend the use of the elastic net penalty to all GLM model

families, as well as Cox models with (start, stop] data and with strata. These new capabilities are

available in version 4.1 and later of the glmnet package on CRAN.
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Appendix for Principal

Components Lasso

A.1 pcLasso penalty contours for two predictors

Assume that we only have two predictors which are standardized to have mean zero and sum of

squares one. Then XTX =

(
1 ρ

ρ 1

)
, where ρ is the sample correlation between the two predictors.

Let A = VDd21−d2jV
T . If ρ > 0, the expressions for the singular value decomposition (SVD) of X

and A are

X = U ·

(
1 + ρ 0

0 1− ρ

)
·

(
1/
√

2 1/
√

2

1/
√

2 −1/
√

2

)
, A = 2ρ

(
1 −1

−1 1

)
.

If ρ < 0, the corresponding expressions are

X = U ·

(
1− ρ 0

0 1 + ρ

)
·

(
1/
√

2 −1/
√

2

1/
√

2 1/
√

2

)
, A = −2ρ

(
1 1

1 1

)
.

With these expressions, the pcLasso penalty can be written explicitly asλ(|β1|+ |β2|) + 2θρ(β1 − β2)2 if ρ > 0,

λ(|β1|+ |β2|)− 2θρ(β1 + β2)2 if ρ < 0.

(Here, the penalty is that in Equation (2.1) but with θ/2 replaced with θ.) Considering the signs of

β1 and β2, we can get an even more explicit description of the contours. We provide the description

for ρ > 0 below:

85
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• β1 ≥ 0, β2 ≥ 0: The parabola β2 = −2
√

2θρ

λ
β2
1 +

C√
2λ

, rotated 45◦ clockwise.

• β1 ≥ 0, β2 ≤ 0: The line β2 = β1 +
λ−

√
λ2 + 8θρC

4θρ
.

• β1 ≤ 0, β2 ≤ 0: The parabola β2 =
2
√

2θρ

λ
β2
1 −

C√
2λ

, rotated 45◦ clockwise.

• β1 ≤ 0, β2 ≥ 0: The line β2 = β1 −
λ−

√
λ2 + 8θρC

4θρ
.

A.2 Comparison of model-fitting times

Table A.1 shows a comparison of model-fitting times for pcLasso against that for other methods,

all available as R packages, for different values of n and p. The competitors include the lasso

glmnet, sparse group lasso SGL and group lasso packages gglasso and grpreg. We note that grpreg

uses orthogonalization within groups to speed up the computation. Among these competitors, only

glmnet and SGL provides sparsity at the level of individual features. All functions were called with

default settings. We see that SGL and gglasso start to slow down considerably as the problem size

gets moderately large, while the times for grpreg are similar to that for pcLasso.

pcLasso
n p glmnet SGL gglasso grpreg SVD Rest Total

100 100 0.05 3.59 3.31 0.02 0.00 0.02 0.02
100 200 0.02 7.14 0.39 0.03 0.01 0.01 0.01
100 500 0.02 29.65 2.40 0.08 0.03 0.02 0.05
500 1000 0.19 14.89 1.12 0.25 0.13 0.38

1000 2000 0.67 6.38 1.50 0.54 2.04
1000 5000 1.10 17.26 11.16 2.35 13.51
2000 5000 2.49 36.57 24.15 3.81 27.96
2000 10000 4.50 139.63 106.56 12.96 119.52

Table A.1: Comparison of timings for pcLasso against various algorithms. The predictors are pre-
assigned to 10 groups. Time in seconds, average over three runs for an entire path of solutions. The
last three columns show the pcLasso model-fitting times broken up by the initial SVD(s) and the rest
of the computation. SGL implements the sparse group lasso. gglasso and grpreg are group lasso
packages; the latter does orthogonalization of predictors.

A.3 Full details of simulation study in Section 2.8

In this appendix, we present the full range of simulation settings that we tested the methods on,

along with greater detail for the data generation processes.
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The methods which we compared are listed in the main text. We present boxplots of the test

mean-squared error (MSE) on 5, 000 test points, i.e. MSE = E[(ŷtest−signaltest)2]. We also present

plots of the true positive rate (TPR) vs. the true negative rate (TNR) (which is also equal to 1−
the false positive rate) for each method regarding feature selection. That is, TPR is the proportion

of true features the model selected, and TNR is the proportion of null features that the model does

not select.

For each simulation setting, we run the simulation 30 times. As such, each boxplot is a summary

of 30 data points, and there are 30 data points on each TPR-TNR plot. A small amount of jitter

has been added to the points in the TPR-TNR plots for a better view of the data.

A.3.1 Setting 1: PC regression and pcLasso’s “home court”

1. n = 100, 10 groups of 20 predictors each.

2. The kth data matrix is generated as an approximately rank-3 matrix: Xk =
∑3
i=1 i ·uivTi +E,

where the entries of the ui, vi and E are i.i.d. N (0, 1).

3. The true signal is the sum of the first sparse PC for the first 5 groups. The sparse PCs are

computed using the elasticnet package and are constrained to have 3 non-zero loadings each.

The signal is scaled to have mean 0 and variance 1. The response is the true signal plus

Gaussian noise such that the target SNR is reached.

The results are shown in Figure A.1.

A.3.2 Setting 2: lasso’s “home court”

1. n = 100, p = 50.

2. The entries of the data matrix are i.i.d. N (0, 1).

3. The true signal is the sum of the first 5 features. The response is the true signal plus Gaussian

noise such that the target SNR is reached.

The results are shown in Figure A.2.

A.3.3 Setting 3: correlation across groups

1. n = 100, 5 groups of 20 predictors each.

2. Generate u∗1 ∈ R100 with entries being i.i.d. N (0, 1) draws. Normalize u∗1 such that ‖u1‖2 = 1.

Generate d∗1 as a random draw from Unif [0.8, 2].

3. For each k = 1, . . . , 5:
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Figure A.1: Results for setting 1: pcLasso’s “home court” simulation. Note the log scale on the
y-axis for the MSE plots.
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Figure A.2: Results for setting 2: lasso’s “home court” simulation.
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(a) For ` = 2, . . . , 5, generate u` ∈ R100 with entries being i.i.d. N (0, 1) draws. Project out

the component of u` that lies in span{u∗1,u2, . . . ,u`−1}, then normalize the remaining

vector to have norm 1. (Call this resulting vector u`.)

(b) Generate v1, . . . ,v5 ∈ R20 with entries being i.i.d. N (0, 1) draws. Normalize v1 to have

norm 1. For ` = 2, . . . , 5, project out the component of v` that lies in span{v1, . . . ,v`−1}
and normalize the remaining vector to have norm 1. (Call the vectors resulting from this

procedure v1, . . . ,v5.)

(c) Set d` = 1/
√
` for ` = 2, . . . , 5.

(d) Set Xk = d∗1u
∗
1v1 +

∑5
`=2 d`u`v`.

4. The true signal is the first PC d∗1u
∗
1, and the response is the true signal plus Gaussian noise

such that the target SNR is reached.

The results are shown in Figure A.3. We do not show TPR-TNR plots for this setting as the

signal is present in each of the groups, so true and null features does not make sense in this setting.

Figure A.3: Results for setting 3: correlation between groups. We do not show TPR-TNR plots as
the notion of true and null features does not make sense in this setting: the signal is present in each
of the groups.

A.3.4 Setting 4: correlation within each group, power decay correlation

structure

1. n = 200, 5 groups of 10 predictors each.
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2. For the kth data matrix, the rows are independent draws from the multivariate normal distri-

bution having mean 0 and covariance equal to the AR(1) correlation matrix with parameter

ρ.

3. The true signal is the sum of the first PCs of the first two groups. The response is the true

signal plus Gaussian noise such that the target SNR is reached.

We ran the set-up above for two values of ρ: ρ = 0.8 for the high correlation setting and ρ = 0.2

for the low correlation setting. The results for the high and low correlation settings are presented

in Figure A.4 and Figure A.5 respectively.

A.3.5 Setting 5: correlation within each group, equicorrelation correla-

tion structure

1. n = 200, 5 groups of 10 predictors each.

2. For the kth data matrix, the rows are independent draws from the multivariate normal distri-

bution having mean 0 and covariance ρ11T + (1− ρ)I for some parameter ρ.

3. The true signal is the sum of the first PCs of the first two groups. The response is the true

signal plus Gaussian noise such that the target SNR is reached.

We ran the set-up above for two values of ρ: ρ = 0.8 for the high correlation setting and ρ = 0.2

for the low correlation setting. The results for the high and low correlation settings are presented

in Figure A.6 and Figure A.7 respectively.

A.4 Proofs for Section 2.9

Before presenting proofs for Section 2.9, we first prove two technical lemmas which show that the

pcLasso solution lies in the constraint set which we will use for the restricted eigenvalue condition

(Equation (2.6)).

Lemma 11. If we solve the constrained form of pcLasso (Equation (2.4)) with R ≤ ‖β∗‖1, then

‖ν̂Sc‖1 ≤ ‖ν̂S‖1.

Proof. Since β̂ is feasible for Equation (2.4), by the triangle inequality,

‖β∗S‖1 ≥ R ≥ ‖β
∗ + ν̂‖1 = ‖β∗S + ν̂S‖1 + ‖ν̂Sc‖1 ≥ ‖β

∗
S‖1 − ‖ν̂S‖1 + ‖ν̂Sc‖1 .

Lemma 12. If we solve the Lagrangian form of pcLasso (Equation (2.5)) with λ ≥ 2
∥∥XTw − nθAβ∗

∥∥
∞ /n,

then ‖ν̂Sc‖1 ≤ 3 ‖ν̂S‖1.
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Figure A.4: Results for setting 4: high correlation within each group. The correlation matrix is the
AR(1) correlation matrix with ρ = 0.8.
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Figure A.5: Results for setting 4: low correlation within each group. The correlation matrix is the
AR(1) correlation matrix with ρ = 0.2.
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Figure A.6: Results for setting 5: high correlation within each group. The correlation matrix is the
equicorrelation matrix with ρ = 0.8.
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Figure A.7: Results for setting 5: low correlation within each group. The correlation matrix is the
equicorrelation matrix with ρ = 0.2.
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Proof. Define G(ν) =
1

2n

∥∥∥ỹ − X̃(β∗ + ν)
∥∥∥2
2

+ λ ‖β∗ + ν‖1. By definition, G(ν̂) ≤ G(0), so

1

2n

∥∥∥w̃ − X̃ν̂
∥∥∥2
2

+ λ ‖β∗ + ν̂‖1 ≤
1

2n
‖w̃‖22 + λ ‖β∗‖1 ,

1

2n
ν̂T (XTX + nθA)ν̂ ≤ w̃T X̃ν̂

n
+ λ(‖β∗‖1 − ‖β

∗ + ν̂‖1). (A.1)

Note that ‖β∗ + ν̂‖1 = ‖β∗S + ν̂S‖1 + ‖ν̂Sc‖1 ≥ ‖β∗S‖1−‖ν̂S‖1 + ‖ν̂Sc‖1; substituting this in the

above gives

1

2n
ν̂T (XTX + nθA)ν̂ ≤ w̃T X̃ν̂

n
+ λ(‖ν̂S‖1 − ‖ν̂Sc‖1). (A.2)

By Hölder’s inequality and our choice of λ, we have

w̃T X̃ν̂

n
≤ 1

n

∥∥∥X̃T w̃
∥∥∥
∞
‖ν̂‖1 =

1

n

∥∥XTw − nθAβ∗
∥∥
∞ ‖ν̂‖1 ≤

1

2
λ ‖ν̂‖1 . (A.3)

Substituting this inequality into Equation (A.2) and noting that the LHS of Equation (A.2) is

always non-negative, we obtain the desired conclusion.

A.4.1 Proof for Lemma 2

Let ν ∈ C be expressed as ν =
∑p
j=1 ajvj , where the vj ’s are the columns of V. Direct computation

gives

‖ν‖22 =

p∑
j=1

a2j , νTXTXν =

p∑
j=1

d2ja
2
j , νT (nθA)ν =

p∑
j=2

nθ(d21 − d2j )a2j . (A.4)

Thus, for any α ∈ [0, 1],

νT (X̃T X̃)ν = νT (XTX + nθA)ν

=

p∑
j=1

d2ja
2
j +

p∑
j=2

nθ(d21 − d2j )a2j

= α

p∑
j=1

d2ja
2
j + (1− α)d21a

2
1 +

p∑
j=2

[
nθd21 + (1− α− nθ)d2j

]
a2j

≥ αnγ
p∑
j=1

a2j + (1− α)d21a
2
1 + min

[
nθd21, nθd

2
1 + (1− α− nθ)d22

] p∑
j=2

a2j ,

νT (X̃T X̃)ν ≥
[
αnγ + min

(
(1− α)d21, nθd

2
1, nθd

2
1 + (1− α− nθ)d22

)]
‖ν‖22 . (A.5)
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If nθ ≤ 1, setting α = 1− nθ in Equation (A.5) gives

νT (X̃T X̃)ν ≥
[
(1− nθ)nγ + min

(
nθd21, nθd

2
1, nθd

2
1

)]
‖ν‖22

= [(1− nθ)nγ + nθd21] ‖ν‖22 .

If nθ ≥ 1, setting α = 0 in Equation (A.5) gives

νT (X̃T X̃)ν ≥ min
(
d21, nθ(d

2
1 − d22) + d22

)
‖ν‖22

≥ min
(
d21, (d

2
1 − d22) + d22

)
‖ν‖22

= d21 ‖ν‖
2
2 .

A.4.2 Proof for Lemma 3

Let ν ∈ Rp be expressed as ν =
∑p
j=1 ajvj , where the vj ’s are the columns of V. Using the formulas

in Equation (A.4),

νT (X̃T X̃)ν = νT (XTX + nθA)ν

=

p∑
j=1

d2ja
2
j +

p∑
j=2

nθ(d21 − d2j )a2j

=

p∑
j=1

[
nθd21 + (1− nθ)d2j

]
a2j

≥ min
j

[
nθd21 + (1− nθ)d2j

] p∑
j=1

a2j≥ nθd21 ‖ν‖
2
2 if nθ ≤ 1,

≥ d21 ‖ν‖
2
2 if nθ ≥ 1

= min(nθ, 1)d21 ‖ν‖
2
2 .

A.4.3 Proofs for Theorems 4 and 5

Let ν̂ = β̂ − β∗. By definition of β̂ and using the relation ỹ = X̃β∗ + w̃,∥∥∥ỹ − X̃β̂
∥∥∥2
2
≤
∥∥∥ỹ − X̃β∗

∥∥∥2
2
,∥∥∥w̃ − X̃ν̂

∥∥∥2
2
≤ ‖w̃‖22 ,

ν̂T (XTX + nθA)ν̂ ≤ 2(X̃T w̃)T ν̂. (A.6)

By Lemma 2, the LHS is ≥ nη ‖ν̂‖22, where nη = min
[
(1− nθ)nγ + nθd21, d

2
1

]
. We can get an
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upper bound on the RHS:

(X̃T w̃)T ν̂ ≤
∥∥∥X̃T w̃

∥∥∥
∞
‖ν̂‖1 (Hölder’s inequality)

=
∥∥XTw − nθAβ∗

∥∥
∞ (‖ν̂S‖1 + ‖ν̂Sc‖1)

≤ 2
∥∥XTw − nθAβ∗

∥∥
∞ ‖ν̂S‖1 (Lemma 11)

≤ 2
∥∥XTw − nθAβ∗

∥∥
∞

√
|S| ‖ν̂‖2 . (Cauchy-Schwarz)

Hence,

nη ‖ν̂‖22 ≤ 4
∥∥XTw − nθAβ∗

∥∥
∞

√
|S| ‖ν̂‖2 ,

‖ν̂‖2 ≤
4
√
|S|
∥∥XTw − nθAβ∗

∥∥
∞

nη
.

When β∗ is aligned with the first principal component of X, Aβ∗ = 0. Hence, the first inequality

in Equation (2.7) reduces to Equation (2.8).

The proof of Theorem 5 is exactly the same as that for Theorem 4, except that we bound the

LHS of Equation (A.6) from below by min (nθ, 1) d21 ‖ν̂‖
2
2. We can do this due to Lemma 3.

A.4.4 Proof of Theorem 6

As in the proof of Lemma 12, we have Equation (A.2):

1

2n
ν̂T (XTX + nθA)ν̂ ≤ w̃T X̃ν̂

n
+ λ(‖ν̂S‖1 − ‖ν̂Sc‖1).

By Lemma 2, the LHS is ≥ η ‖ν̂‖22 /2, where nη = min
[
(1− nθ)nγ + nθd21, d

2
1

]
. By our choice of

λ, we may use Equation (A.3) to obtain

η

2
‖ν̂‖22 ≤

1

2
λ ‖ν̂‖1 + λ(‖ν̂S‖1 − ‖ν̂Sc‖1)

≤ 3λ

2
‖ν̂S‖1 ≤

3λ

2

√
|S| ‖ν̂‖2 ,

‖ν̂‖2 ≤
3λ
√
|S|

η
,

as required.
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A.4.5 Proof of Theorem 7

By Equation (A.1),

0 ≤ 1

2n
ν̂T (XTX + nθA)ν̂

≤ w̃T X̃ν̂

n
+ λ(‖β∗‖1 − ‖β

∗ + ν̂‖1)

≤ 1

n

∥∥∥X̃T w̃
∥∥∥
∞
‖ν̂‖1 + λ(‖β∗‖1 − ‖β

∗ + ν̂‖1) (Hölder’s inequality)

≤
(

1

n

∥∥XTw − nθAβ∗
∥∥
∞ − λ

)
‖ν̂‖1 + 2λ ‖β∗‖1 (triangle inequality)

≤ −λ
2
‖ν̂‖1 + 2λ ‖β∗‖1 , (by choice of λ),

so ‖ν̂‖1 ≤ 4 ‖β∗‖1. Using Equation (A.1) again,

1

2n

∥∥∥X(β̂ − β∗)
∥∥∥2
2

=
1

2n
ν̂TXTXν̂ ≤ 1

2n
ν̂T (XTX + nθA)ν̂

≤ 1

n

∥∥∥X̃T w̃
∥∥∥
∞
‖ν̂‖1 + λ ‖ν̂‖1

≤ 3λ

2
‖ν̂‖1

≤ 6λ ‖β∗‖1 .

Multiplying both sides by 2 establishes the claim.

A.4.6 Proof of Theorem 8

Let κ = min(nθ, 1)d21. Mimicking the first part of the proof of Theorem 7 and using Lemma 3, we

have

−λ
2
‖ν̂‖1 + 2λ ‖β∗‖1 ≥

1

2n
ν̂T (X̃T X̃)ν̂ ≥ κ ‖ν̂‖22

≥ κ
‖ν̂‖21
p

, (Cauchy-Schwarz),

κ

p
‖ν̂‖21 +

λ

2
‖ν̂‖1 − 2λ ‖β∗‖1 ≤ 0,

‖ν̂‖1 ≤
−λ/2 +

√
λ2/4 + 8λ ‖β∗‖1 κ/p

2κ/p

=
−λp+

√
λ2p2 + 32λ ‖β∗‖1 κp

4κ
.
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Thus, mimicking the second part of the proof of Theorem 7,

1

2n

∥∥∥X(β̂ − β∗)
∥∥∥2
2
≤ 3λ

2
‖ν̂‖1

≤ 3λ

2

−λp+
√
λ2p2 + 32λ ‖β∗‖1 κp

4κ
,

1

n

∥∥∥X(β̂ − β∗)
∥∥∥2
2
≤

3λ(−λp+
√
λ2p2 + 32λ ‖β∗‖1 κp)

4κ
,

as required. To show that the RHS above is indeed a better bound than that in Theorem 7:

12λ ‖β∗‖1 ≥
3λ(−λp+

√
λ2p2 + 32λ ‖β∗‖1 κp)

4κ

⇔ 16κ ‖β∗‖1 ≥ −λp+
√
λ2p2 + 32λ ‖β∗‖1 κp

⇔ (λp+ 16κ ‖β∗‖1)2 ≥ λ2p2 + 32λ ‖β∗‖1 κp

⇔ 256κ2 ‖β∗‖21 ≥ 0,

which is obviously true.

A.4.7 Proof of Theorem 9

We have

1

2n
ν̂T (XTX + nθA)ν̂ ≤ w̃T X̃ν̂

n
+ λ(‖ν̂S‖1 − ‖ν̂Sc‖1) ((A.2) in Lemma 12)

≤ 1

n

∥∥∥X̃T w̃
∥∥∥
∞
‖ν̂‖1 + λ ‖ν̂‖1 (Hölder’s inequality)

≤ 3λ

2
‖ν̂‖1 (choice of λ)

≤ 3λ

2

√
|S| ‖ν̂‖2 . (Cauchy-Schwarz inequality)

By Lemma 12, ν̂ lies in the set {ν ∈ Rp : ‖νSc‖1 ≤ 3 ‖νS‖1}, and so the restricted eigenvalue

condition and Lemma 2 apply, i.e. ‖ν̂‖22 ≤
∥∥∥X̃ν̂

∥∥∥2
2
/(nη), where nη = min

[
(1− nθ)nγ + nθd21, d

2
1

]
.

Hence,

1

2n
ν̂T (XTX + nθA)ν̂ ≤ 3λ

2

√
|S| ‖ν̂‖2 ≤

3λ

2

√
|S|
√

1

nη

∥∥∥X̃ν̂
∥∥∥
2
,

‖Xν̂‖2 ≤
∥∥∥X̃ν̂

∥∥∥
2
≤ 3nλ

√
|S|
√

1

nη
,

‖Xν̂‖22
n

≤ 9|S|λ2

η
,

as required.
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A.5 Effect of θ on bound in Theorem 5

In this Appendix, we investigate the effect that θ has on the bound on the RHS of Theorem 5,

i.e. 4
√
|S|
∥∥XTw − nθAβ∗

∥∥
∞ /[min (nθ, 1) d21]. Other than θ, this bound depends on a number of

different quantities which makes it difficult to perform an exhaustive study. Instead, we perform a

numerical investigation with data generated according to Algorithm 10. In this set-up, X is assumed

to have rank 2. We investigate how the value of the bound changes with θ across a range of signal-

to-noise ratios (SNR) in the response (denoted by SNR), the proportion of β∗ that aligns with the

first PC of X (denoted by b), and the relative strength of the first and second PCs of X (denoted

by d2).

Algorithm 10 Data generating process for numerical simulation in Appendix A.5

1. Input: Second singular value d2 ∈ [0, 1], b ∈ [0, 1] representing the proportion of β∗ that is
aligned with the first PC of X, and SNR ratio SNR > 0. Set n = 50, p = 100.

2. Generate random vectors u1,u2 ∈ Rn and v1,v2 ∈ Rp such that their entries are i.i.d. N (0, 1).
Orthogonalize them so that they all have norm 1 and uT1 u2 = vT1 v2 = 0. Set X = u1v

T
1 +

d2u2v
T
2 .

3. Compute the SVD of X = UDVT . Let Dd21−d2j be the p × p diagonal matrix with diagonal

entries being d21 − d2j , and compute A = VDd21−d2jV
T .

4. Define β∗ = [bv1 + (1− b)v2]/ ‖bv1 + (1− b)v2‖2.

5. Compute true signal µ = Xβ∗. Generate noise vector w ∈ Rn such that its entries are i.i.d.
N (0, 1). Define the respones to be y = µ+σw, where σ is chosen so that V ar(µ)/V ar(σw) =
SNR.

For each choice of SNR, b and d2, we generate data according to Algorithm 10 100 times and

compute the value of the bound for a grid of nθ values from 0.3 to 1.25. The mean value of the

bound is shown in Figure A.8. We see that the bound generally decreases as the SNR increases,

which makes sense as pcLasso should be able to estimate β∗ more accurately when the signal is

stronger. In general the bound decreases as the proportion of β∗ that lines up with the top PC of

X increases. Again, we expect this, since pcLasso should be most accurate when β∗ lines up with

the top PC of X.

From Figure A.8, it is tempting to conclude that the best value of θ is always θ = 1/n. This

is not the case, as we recall that the lines in the figure are a mean over 100 simulation runs. In

Figure A.9, we plot the value of the bound vs. nθ for each of 8 simulation runs, with SNR = 1 and

d2 = 0.5. We can see that the best value of θ depends very much on data at hand. We note further

that the quantity we are plotting is merely an upper bound of
∥∥∥β̂ − β∗

∥∥∥
2
, not

∥∥∥β̂ − β∗
∥∥∥
2

itself. In

practice, we recommend selecting θ by cross-validation.
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Figure A.8: Value of the bound on the RHS of Theorem 5 for data generated according to Algorithm
10. Each line is the mean of 100 simulations. The SNR in the response increases as we go from
left to right, and the relative strength of the second PC of X increase as we go from top to bottom.
Within each panel, each line corresponds to one value of b, the proportion of the true coefficient
vector β∗ that aligns with the top PC of X.

Figure A.9: Value of the bound on the RHS of Theorem 5 for data generated according to Algorithm
10. Each line represents the bound for one simulation run. SNR = 1 and d2 = 0.5. Each panel
corresponds to one value of the parameter b.
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A.6 Strong rules for pcLasso

Recall that in computing the principal components lasso (pcLasso) solution, we typically hold θ fixed

and compute the solution for a path of λ values. By casting the pcLasso optimization problem as

a lasso problem with a different response and design matrix, we can derive strong rules for pcLasso

from that for the lasso.

We first derive strong rules for pcLasso where predictors do not have preassigned groups, i.e. the

solution to Equation (2.1). If we define

ỹ =

(
y

0

)
, X̃ =

(
X

√
θA1/2

)
, (A.7)

where A = VDd21−d2jV
T , then pcLasso is equivalent to the lasso with response vector ỹ and design

matrix X̃. Fix θ, fix a path of λ values λ1 ≥ λ2 ≥ . . . , and let β̂(λi) denote the pcLasso solution at

λ = λi. Applying the lasso strong rules Tibshirani et al. (2012) to this set-up, the sequential strong

rule for pcLasso for discarding predictor j at λ = λi is

|XT
j (y −Xβ̂(λi−1))− θ(A1/2)jA

1/2β̂(λi−1)| < 2λi − λi−1,

⇔ |XT
j (y −Xβ̂(λi−1))− θ(Aβ̂(λi−1))j | < 2λi − λi−1. (A.8)

Next we derive strong rules for pcLasso where predictors come in preassigned non-overlapping

groups, i.e. the solution to (2.3). If we define Ak = VkDd2k1−d
2
kj

VT
k for k = 1, . . . ,K, A as the block

diagonal matrix

A =


A1 0

. . .

0 AK

 ,

and ỹ and X̃ as in Equation (A.7), then pcLasso is again equivalent to the lasso with ỹ and X̃. This

results in the same sequential strong rule as in the single group case (Equation A.8), although the

matrix A is defined differently.



Appendix B

Appendix for Feature-Weighted

Elastic Net

B.1 Alternative algorithm with θ as a parameter

Assume that y and the columns of X are centered so that β̂0 = 0 and we can ignore the intercept

term in the rest of the discussion. If we consider θ as an argument of the objective function, then

we wish to solve

(β̂, θ̂) = argmin
β,θ

Jλ,α(β,θ)

= argmin
β,θ

1

2
‖y −Xβ‖22 + λ

p∑
j=1

wj(θ)

[
α|βj |+

1− α
2

β2
j

]
.

J is not jointly convex β and θ, so reaching a global minimum is a difficult task. Instead, we

content ourselves with reaching a local minimum. A reasonable approach for doing so is to alternate

between optimizing β and θ: the steps are outlined in Algorithm 11.

Unfortunately, Algorithm 11 is slow due to repeated solving of the elastic net problem in Step

2(b)ii for each λi. The algorithm does not take advantage of the fact that once α and θ are fixed,

the elastic net problem can be solved quickly for an entire path of λ values. We have also found

that Algorithm 11 does not predict as well as Algorithm 2 in our simulations.

B.2 Proof of Theorem 10

For the moment, consider the more general penalty factor wj(θ) =
[∑p

`=1 f(zT` θ)
]
/
[
pf(zTj θ)

]
,

where f is some function with range [0,+∞). (Fwelnet makes the choice f(x) = ex.)

104
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Algorithm 11 Minimizing the fwelnet objective function via alternating minimization

1. Select a value of α ∈ [0, 1] and a sequence of λ values λ1 > . . . > λm.

2. For i = 1, . . . ,m:

(a) Initialize β(0)(λi) at the elastic net solution for λi. Initialize θ(0) = 0.

(b) For k = 0, 1, . . . until convergence:

i. Fix β = β(k), update θ(k+1) via gradient descent. That is, set ∆θ =
∂Jλi,α
∂θ

∣∣∣∣
β=β(k),θ=θ(k)

and update θ(k+1) = θ(k) − η∆θ, where η is the step

size computed via backtracking line search to ensure that Jλi,α
(
β(k),θ(k+1)

)
<

Jλi,α
(
β(k),θ(k)

)
.

ii. Fix θ = θ(k+1), update β(k+1) by solving the elastic net with updated penalty factors
wj(θ

(k+1)).

First note that if feature j belongs to group k, then zTj θ = θk, and its penalty factor is

wj(θ) =

∑p
`=1 f(zT` θ)

pf(zTj θ)
=

∑p
`=1 f(θ`)

pf(θk)
=

∑K
`=1 p`f(θ`)

pf(θk)
,

where p` denotes the number of features in group `. Letting vk = f(θk)/
[∑K

`=1 p`f(θ`)
]

for

k = 1, . . . ,K, minimizing the fwelnet objective function (3.2) over β and θ reduces to

minimize
β,θ

1

2
‖y −Xβ‖22 +

λ

p

K∑
k=1

1

vk

[
α
∥∥∥β(k)

∥∥∥
1

+
1− α

2

∥∥∥β(k)
∥∥∥2
2

]
.

For fixed β, we can explicitly determine the vk values which minimize the expression above. By

the Cauchy-Schwarz inequality,

λ

p

K∑
k=1

1

vk

[
α
∥∥∥β(k)

∥∥∥
1

+
1− α

2

∥∥∥β(k)
∥∥∥2
2

]

=
λ

p

(
K∑
k=1

1

vk

[
α
∥∥∥β(k)

∥∥∥
1

+
1− α

2

∥∥∥β(k)
∥∥∥2
2

])( K∑
k=1

pkvk

)

≥ λ

p

(
K∑
k=1

√
pk

[
α
∥∥β(k)

∥∥
1

+
1− α

2

∥∥β(k)
∥∥2
2

])2

. (B.1)

Note that equality is attainable for (B.1): letting ak =

√[
α
∥∥β(k)

∥∥
1

+ 1−α
2

∥∥β(k)
∥∥2
2

]
/pk, equality
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occurs when there is some c ∈ R such that

c · 1

vk

[
α
∥∥∥β(k)

∥∥∥
1

+
1− α

2

∥∥∥β(k)
∥∥∥2
2

]
= pkvk for all k,

vk =
√
cak for all k.

Since
∑K
k=1 pkvk = 1, we have

√
c = 1/

(∑K
k=1 pkak

)
, giving vk = ak/

(∑K
k=1 pkak

)
for all k. A

solution for this is f(θk) = ak for all k, which is feasible for f having range [0,∞). (Note that if

f only has range (0,∞), the connection still holds if limx→−∞ f(x) = 0 or limx→+∞ f(x) = 0: the

solution will just have θ = +∞ or θ = −∞.)

Thus, the fwelnet solution is

argmin
β

1

2
‖y −Xβ‖22 +

λ

p

(
K∑
k=1

√
pk

[
α
∥∥β(k)

∥∥
1

+
1− α

2

∥∥β(k)
∥∥2
2

])2

. (B.2)

When α = 0, the penalty term is convex. Writing in constrained form, (B.2) becomes minimizing

‖y −Xβ‖22 /2 subject to

(
K∑
k=1

√
pk

∥∥∥β(k)
∥∥∥
2

)2

≤ C for some constant C,

K∑
k=1

√
pk

∥∥∥β(k)
∥∥∥
2
≤
√
C.

Converting back to Lagrange form again, there is some λ′ ≥ 0 such that the fwelnet solution is

argmin
β

1

2
‖y −Xβ‖22 + λ′

K∑
k=1

√
pk

∥∥∥β(k)
∥∥∥
2
.

B.3 Details on simulation study in Section 3.5

B.3.1 Setting 1: Noisy version of the true β

1. Set n = 100, p = 50, β ∈ R50 with βj = 2 for j = 1, . . . , 5, βj = −1 for j = 6, . . . , 10, and

βj = 0 otherwise.

2. Generate xij
i.i.d.∼ N (0, 1) for i = 1, . . . , n and j = 1, . . . , p.

3. For each SNRy ∈ {0.5, 1, 2} and SNRZ ∈ {0.5, 2, 10}:

(a) Compute σ2
y =

(∑p
j=1 β

2
j

)
/SNRy.

(b) Generate yi =
∑p
j=1 xijβj + εi, where εi

i.i.d.∼ N (0, σ2
y) for i = 1, . . . , n.
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(c) Compute σ2
Z = Var(|β|)/SNRZ .

(d) Generate zj = |βj | + ηj , where ηj
i.i.d.∼ N (0, σ2

Z). Treat this as a column matrix to get

Z ∈ Rp×1.

B.3.2 Setting 2: Grouped data setting

1. Set n = 100, p = 150.

2. For j = 1, . . . , p and k = 1, . . . 15, set zjk = 1 if 10(k − 1) < j ≤ 10k, zjk = 0 otherwise.

3. Generate β ∈ R150 with βj = 3 or βj = −3 with equal probability for j = 1, . . . , 10G, βj = 0

otherwise. G = 1 for the first scenario where the response depends on the first group only, and

G = 4 for the second scenario where it depends on the first 4 groups.

4. Generate xij
i.i.d.∼ N (0, 1) for i = 1, . . . , n and j = 1, . . . , p.

5. For each SNRy ∈ {0.5, 1, 2}:

(a) Compute σ2
y =

(∑p
j=1 β

2
j

)
/SNRy.

(b) Generate yi =
∑p
j=1 xijβj + εi, where εi

i.i.d.∼ N (0, σ2
y) for i = 1, . . . , n.

B.3.3 Setting 3: Noise variables

1. Set n = 100, p = 100, β ∈ R100 with βj = 2 for j = 1, . . . , 10, and βj = 0 otherwise.

2. Generate xij
i.i.d.∼ N (0, 1) for i = 1, . . . , n and j = 1, . . . , p.

3. For each SNRy ∈ {0.5, 1, 2}:

(a) Compute σ2
y =

(∑p
j=1 β

2
j

)
/SNRy.

(b) Generate yi =
∑p
j=1 xijβj + εi, where εi

i.i.d.∼ N (0, σ2
y) for i = 1, . . . , n.

(c) Generate zjk
i.i.d.∼ N (0, 1) for j = 1, . . . , p and k = 1, . . . 10. This gives a matrix Z ∈

Rp×10.

B.4 Details on simulation study in Section 3.7

1. Set n = 150, p = 50.

2. Generate β1 ∈ R50 with

β1,j =


5 or − 5 with equal probability for j = 1, . . . , 5,

2 or − 2 with equal probability for j = 6, . . . , 10,

0 otherwise.
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3. Generate β2 ∈ R50 with

β2,j =


5 or − 5 with equal probability for j = 1, . . . , 5,

2 or − 2 with equal probability for j = 11, . . . , 15,

0 otherwise.

4. Generate xij
i.i.d.∼ N (0, 1) for i = 1, . . . , n and j = 1, . . . , p.

5. Generate response 1, y1 ∈ R150, in the following way:

(a) Compute σ2
1 =

(∑p
j=1 β

2
1,j

)
/0.5.

(b) Generate y1,i =
∑p
j=1 xijβ1,j + ε1,i, where ε1,i

i.i.d.∼ N
(
0, σ2

1

)
for i = 1, . . . , n.

6. Generate response 2, y2 ∈ R150, in the following way:

(a) Compute σ2
2 =

(∑p
j=1 β

2
2,j

)
/1.5.

(b) Generate y2,i =
∑p
j=1 xijβ2,j + ε2,i, where ε2,i

i.i.d.∼ N
(
0, σ2

2

)
for i = 1, . . . , n.



Appendix C

Appendix for Reluctant

Generalized Additive Models

C.1 Full details of simulation study

In all the simulations that follow, the feature values Xij are independent draws from the Unif[−1, 1]

distribution. The response is yi = µi+ εi = f(Xi1, . . . , Xip) + εi, where f is a function that depends

on the simulation and the εi’s are independent N (0, σ2) draws. The data generating process for the

signal is such that the linear and non-linear components are orthogonal. σ2 is set so that the data

has the desired signal-to-noise ratio (SNR).

We compare the following methods across a range of settings:

1. The null model, i.e. mean of the training responses,

2. The lasso (Tibshirani, 1996),

3. Generalized additive model selection (GAMSEL) (Chouldechova and Hastie, 2015),

4. Reluctant generalized additive modeling (RGAM), where non-linear features are constructed

for all p main effects, and

5. RGAM where non-linear features are only constructed for the main effects which are in the

active set after Step 1 of Algorithm 5 (denoted RGAM SEL).

For all methods, 5-fold cross-validation (CV) was performed to select the hyperparameter λ only:

default values were used for all other hyperparameters. Each boxplot is the result of 30 simulation

runs. The test error metric is mean-squared error where the target is the true signal value, i.e.

E[(ŷtest − µtest)2] instead of E[(ŷtest − ytest)2]. (With this test error metric, the oracle which knows

109
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the data generating model would have a test error of 0.) Test error is estimated using 5,000 test

points.

For each simulation setting, the results are presented in a 3 × 3 panel. Each row of the panel

corresponds to the one of three SNR values: 1, 2 or 5. In each row, the left-most plot presents

test error as a fraction of the test error achieved by the null model (denoted by the dotted red

line). The middle plot in each row presents the number of features each model selected, with the

two numbers on top of the boxplots being the median number of linear components and non-linear

components selected. The number of true features is indicated by the dotted red line, and the number

of true linear and non-linear components is in the plot’s subtitle. (Note that the number of non-zero

features is not necessarily the sum of the number of non-zero linear and non-linear components:

this is because a feature can have both a linear and non-linear component.) The right-most plot in

each row presents the number of true features each method selected, with the total number of true

features indicated by the dotted red line.

Note: The simulations that follow are not presented in the same order as in the main text.
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C.1.1 Small n and p, fully linear signal

n = 100, p = 200, µ =
∑10
j=1 Xj .
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Figure C.1: Results for simulation setting 1: Small n and p, fully linear signal.
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C.1.2 Small n and p, hierarchical non-linear signal

n = 100, p = 200, µ =
∑5
j=1[Xj + 2(3X2

j − 1)/3].
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Figure C.2: Results for simulation setting 2: Small n and p, hierarchical non-linear signal.
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C.1.3 Small n and p, purely non-linear signal

n = 100, p = 200, µ =
∑5
j=1 2(5X3

j − 3Xj).
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Figure C.3: Results for simulation setting 3: Small n and p, purely non-linear signal.
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C.1.4 Small n and p, linear and non-hierarchical non-linear signal

n = 100, p = 200, µ =
∑5
j=1 Xj +

∑10
j=6 2(3X2

j − 1)/3.
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Figure C.4: Results for simulation setting 4: Small n and p, linear and non-hierarchical non-linear
signal.
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C.1.5 Small n and p, hierarchical and non-hierarchical non-linear signal

n = 100, p = 200, µ =
∑5
j=1[Xj + 3(5X3

j − 3Xj)/4] +
∑8
j=6 0.85(3X2

j − 1).
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Figure C.5: Results for simulation setting 5: Small n and p, hierarchical and non-hierarchical non-
linear signal.
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C.1.6 Large n and p, hierarchical and non-hierarchical non-linear signal

n = 1, 000, p = 500, µ =
∑20
j=1 Xj +

∑20
j=1 3(5X3

j − 3Xj)/4 +
∑28
j=21(3X2

j − 1).
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Figure C.6: Results for simulation setting 6: Large n and p, hierarchical and non-hierarchical non-
linear signal.



Bibliography

Andersen, P. K. and Gill, R. D. (1982). Cox’s Regression Model for Counting Processes: A Large

Sample Study. Annals of Statistics, 10(4):1100–1120.

Baik, J. and Silverstein, J. W. (2006). Eigenvalues of Large Sample Covariance Matrices of Spiked

Population Models. Journal of Multivariate Analysis, 97(6):1382–1408.

Bates, S., Hastie, T., and Tibshirani, R. (2021). Cross-Validation: What Does It Estimate and How

Well Does It Do It? ArXiv e-Prints, pages 1–38.

Bergersen, L. C., Glad, I. K., and Lyng, H. (2011). Weighted Lasso with Data Integration. Statistical

Applications in Genetics and Molecular Biology, 10(1).

Bergstra, J. and Bengio, Y. (2012). Random Search for Hyper-Parameter Optimization. Journal of

Machine Learning Research, 13:281–305.

Boulesteix, A.-L., De Bin, R., Jiang, X., and Fuchs, M. (2017). IPF-LASSO: Integrative L1-Penalized

Regression with Penalty Factors for Prediction Based on Multi-Omics Data. Computational and

Mathematical Methods in Medicine, 2017:1–14.

Breheny, P. and Huang, J. (2011). Coordinate descent algorithms for nonconvex penalized regression,

with applications to biological feature selection. Annals of Applied Statistics, 5(1):232–253.

Breheny, P. and Huang, J. (2015). Group Descent Algorithms for Nonconvex Penalized Linear and

Logistic Regression Models with Grouped Predictors. Statistics and Computing, 25(2):173–187.

Breiman, L. (2001). Random Forests. Machine Learning, 45(1):5–32.

Breslow, N. E. (1972). Contribution to the Discussion of the Paper by D. R. Cox. Journal of the

Royal Statistical Society: Series B (Methodological), 34:216–217.

Cai, T. T., Ma, Z., and Wu, Y. (2013). Sparse PCA: Optimal Rates and Adaptive Estimation.

Annals of Statistics, 41(6):3074–3110.

117



BIBLIOGRAPHY 118

Chouldechova, A. and Hastie, T. (2015). Generalized Additive Model Selection. arXiv preprint

arXiv:1506.03850, pages 1–24.

Cox, D. R. (1972). Regression Models and Life-Tables. Journal of the Royal Statistical Society:

Series B (Methodological), 34(2):187–220.

Efron, B. (1986). How Biased is the Apparent Error Rate of a Prediction Rule? Journal of the

American Statistical Association, 81(394):461–470.

Efron, B. (2012). Large-Scale Inference: Empirical Bayes Methods for Estimation, Testing, and

Prediction, volume 1. Cambridge University Press.

Erez, O., Romero, R., Maymon, E., Chaemsaithong, P., Done, B., Pacora, P., Panaitescu, B.,

Chaiworapongsa, T., Hassan, S. S., and Tarca, A. L. (2017). The Prediction of Late-Onset

Preeclampsia: Results from a Longitudinal Proteomics Study. PLoS ONE, 12(7):e0181468.

Fan, J. and Li, R. (2001). Variable Selection via Nonconcave Penalized Likelihood and its Oracle

Properties. Journal of the American Statistical Association, 96(456):1348–1360.

Friedman, J., Hastie, T., and Tibshirani, R. (2010). Regularization Paths for Generalized Linear

Models via Coordinate Descent. Journal of Statistical Software, 33(1):1–24.

Goeman, J. J., Meijer, R. J., and Chaturvedi, N. (2018). Penalized: L1 (Lasso and Fused Lasso)

and L2 (Ridge) Penalized Estimation in GLMs and in the Cox Model. R package version 0.9-51.

Gorst-Rasmussen, A. and Scheike, T. H. (2012). Coordinate descent methods for the penalized

semiparametric additive hazards model. Journal of Statistical Software, 47(9):1–17.

Hastie, T. and Efron, B. (2013). lars: Least Angle Regression, Lasso and Forward Stagewise. R

package version 1.2.

Hastie, T. and Tibshirani, R. (1986). Generalized Additive Models. Statistical Science, pages 297–

310.

Hastie, T., Tibshirani, R., and Tibshirani, R. (2020). Best Subset, Forward Stepwise or Lasso?

Analysis and Recommendations Based on Extensive Comparisons. Statistical Science, 35(4):579–

592.

Hastie, T., Tibshirani, R., and Wainwright, M. (2015). Statistical Learning with Sparsity: The Lasso

and Generalizations. CRC press.

Hoerl, A. E. and Kennard, R. W. (1970). Ridge regression: Biased Estimation for Nonorthogonal

Problems. Technometrics, 12(1):55–67.



BIBLIOGRAPHY 119

Jabeen, M., Yakoob, M. Y., Imdad, A., and Bhutta, Z. A. (2011). Impact of Interventions to Prevent

and Manage Preeclampsia and Eclampsia on Stillbirths. BMC Public Health, 11(S3):S6.

Johnstone, I. M. and Lu, A. Y. (2009). On Consistency and Sparsity for Principal Components

Analysis in High Dimensions. Journal of the American Statistical Association, 104(486):682–693.

Jolliffe, I. T., Trendafilov, N. T., and Uddin, M. (2003). A Modified Principal Component Technique

Based on the LASSO. Journal of Computational and Graphical Statistics, 12(3):531–547.

Li, C. and Li, H. (2008). Network-Constrained Regularization and Variable Selection for Analysis

of Genomic Data. Bioinformatics, 24(9):1175–1182.

Lin, Y. and Zhang, H. H. (2006). Component Selection and Smoothing in Multivariate Nonpara-

metric Regression. Annals of Statistics, 34(5):2272–2297.

Lokhorst, J., Venables, B., Turlach, B., and Maechler, M. (2020). lasso2: L1 Constrained Estimation

aka ‘Lasso’. R package version 1.2-21.1.

Lou, Y., Bien, J., Caruana, R., and Gehrke, J. (2016). Sparse Partially Linear Additive Models.

Journal of Computational and Graphical Statistics, 25(4):1126–1140.

Mackey, L. (2009). Deflation Methods for Sparse PCA. Advances in Neural Information Processing

Systems, pages 1017–1024.

McCullagh, P. and Nelder, J. A. (1983). Generalized Linear Models. Springer US.
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