CV & Resume
Latest Curriculum Vitae & Resume (updated Aug
2024).
Research
Publications
- C. Wei, B. Zelditch, J. Chen, A. A. S. T. Ribeiro, J. K. Tay, B. O. Elizondo, K. Selvaraj, A. Gupta, and L. B. De Almeida. Neural Optimization with Adaptive Heuristics for Intelligent Marketing System. To appear in KDD 2024.
- E. Tuzhilina, T. J. Hastie, D. J. McDonald, J. K. Tay, and R. Tibshirani. Smooth multi-period forecasting
with application to prediction of COVID-19 cases. Journal of Computational and Graphical Statistics, 2023.
- J. K. Tay, B. Narasimhan and T. Hastie. Elastic net regularization paths for all generalized linear
models. Journal of Statistical Software, 2023, 106(1): 1-31. [PDF] [R package]
- J. K. Tay, N. Aghaeepour, T. Hastie, and R. Tibshirani. Feature-weighted elastic net: using "features of
features" for better prediction. Statistica Sinica, 2021. [PDF] [R package]
- D. Shung, J. Huang, E. Castro, J. K. Tay, M. Simonov, L. Laine, R. Batra, and S. Krishnaswamy. Neural
network predicts need for red blood cell transfusion for patients with acute gastrointestinal bleeding admitted to
the intensive care unit. Scientific Reports, 2021, 11:8827. [PDF]
- J. K. Tay, J. Friedman, and R. Tibshirani. Principal component-guided sparse regression. Canadian
Journal of Statistics, 2021, 49(4):1222-1257. [PDF] [R package]
- D. Shung, C. Tsay, L. Laine, D. Chang, F. Li, P. Thomas, C. Partridge, M. Simonov, A. Hsiao, J. K. Tay,
and A. Taylor. Early identification of patients with acute gastrointestinal bleeding using natural language
processing and decision rules. Journal of Gastroenterology and Hepatology, 2021, 36(6):1590-7. [PDF]
- J. K. Tay, and R. Tibshirani. Reluctant generalized additive modeling. International Statistical
Review, 2020, 88(S1):S205-S224. [PDF] [R package]
- D. L. Shung, B. Au, R. A. Taylor, J. K. Tay, S. B. Laursen, A. J. Stanley, H. R. Dalton, J. Ngu, M.
Schultz, and L. Laine. Validation of a machine learning model that outperforms clinical risk scoring systems for
upper gastrointestinal bleeding. Gastroenterology, 2020, 158(1):160-7. [PDF]
Conferences & Workshops
- A. Gupta, S. S. Keerthi, A. Acharya, M. Cheng, B. O. Elizondo, R. Ramanath, R. Mazumder, K. Basu, J. K. Tay, and R. Gupta. Practical Design of Performant Recommender Systems using Large-scale Linear Programming-based Global Inference. In KDD 2023.
Preprints & Theses
- PhD Dissertation (2021): Extending the reach of the lasso and elastic
net penalties: Methodology and practice.
- J. K. Tay, and R. Tibshirani. A latent factor approach for prediction from multiple assays.
arXiv:1807.05675 [stat.ME], 2018.
- Senior Thesis (2010): Maximizing expected logarithmic utility in a regime-switching
model with inside information.
- Junior Paper (2009): Construction of space-time block codes from a decoding point of
view.
Teaching
Course Instructor
- STATS 32. Introduction to R for Undergraduates. Stanford University, Autumn 2019-2020. Course website here.
- STATS 32. Introduction to R for Undergraduates. Stanford University, Autumn 2018-2019. Course website here.
- STATS 302. Qualifying Exams Workshop (Applied Statistics). Stanford University, Summer 2017-2018.
- STATS 32. Introduction to R for Undergraduates. Stanford University, Autumn 2017-2018. Course material
available here.
Teaching Assistant
- CS 229M/STATS 214. Machine Learning Theory. Stanford University, Winter 2020-2021.
- STATS 200. Introduction to Statistical Inference. Stanford University, Autumn 2020-2021.
- STATS 315B. Modern Applied Statistics: Data Mining. Stanford University, Spring 2019-2020.
- STATS 216. Introduction to Statistical Learning. Stanford University, Winter 2019-2020.
- STATS 191. Introduction to Applied Statistics. Stanford University, Winter 2018-2019.
- STATS 216V. Introduction to Statistical Learning. Stanford University, Summer 2017-2018.
- STATS 305C. Methods for Applied Statistics II: Applied Multivariate Statistics. Stanford University, Spring
2017-2018.
- STATS 216. Introduction to Statistical Learning. Stanford University, Winter 2017-2018.
- STATS 116. Theory of Probability. Stanford University, Summer 2016-2017.
- STATS 290. Paradigms for Computing with Data. Stanford University, Winter 2016-2017.
- STATS 116. Theory of Probability. Stanford University, Autumn 2016-2017.
Grader
- MAT 200. Linear Algebra and Multivariable Calculus for Economists. Princeton University, Fall 2009-2010.
- MAT 104. Calculus. Princeton University, Spring 2008-2009.
- MAT 103. Calculus. Princeton University, Fall 2008-2009.